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ABSTRACT

The objective of this paper is to examine whether or not the -  filter is a version of the Kalman
filter. We will closely study the closed-form of the time-variant -  filter and the stability condi-
tions of the constant -  filter. Since these problems were studied more than forty years ago,
only final conclusions are presented in the recent literature without their derivations or the
assumptions on which these derivations depended. Starting with the basic definitions of the -
filter, its properties are derived in the state space in this paper. The analyses carried out in the time
domain and some properties that were not previously reported will be derived. By examining the
analysis results and assumptions required for the derivations, similarity or dissimilarity between
the two filtering techniques will be concluded.

1.0  Introduction

The -  filter [16] has been developed and used slightly earlier than the Kalman filtering theory
[8]. Compared to the Kalman filter, the structure of the -  filter is simpler and its computational
load is lower. Because of these features, the -  filter is often used for target tracking by radar
systems. 

Since both filters has a feedback structure, there has been many attempts to find the relations
between the -  and Kalman filters. Many researchers report the similarity or correspondence of
the -  filter to the Kalman filtering technique [4,7,10,14]. They define the feedback gain matrix
in terms of two parameters of -  and claim that the -  filter is a modified version of the Kal-
man filter. It is difficult, however, to confirm their claims, since the properties of various -  fil-
ters are presented without the background derivations or assumptions [4]. 

We focus in this paper on two classical problems of the -  filter. Firstly, we derive the closed-
form -  filter starting with the Kalman filter to see whether or not the -  filter can be gener-
ated by modifying the Kalman filter. Secondly, we will examine the steady-state conditions
required for the constant -  filter. The analysis for these problems will clarify the similarities or
dissimilarities between the two filtering techniques. The reports that claim the similarity
depended on specific assumptions. We itemizes all assumptions that are necessary for the deriva-
tion. We will carry out our analysis in the time domain in order to avoid ambiguities/confusions in
analyzing stochastic system signals by, for example, z-transform [16,14]. A mathematical tech-
nique called the Kronecker product [6] will be applied in order to significantly simplify the deri-
vations.

The outline of this paper is as follows. In Section 2.0, a brief introduction to the -  filter is pre-
sented. A closed form -  filter is derived and its properties are discussed in Section 3.0. The
steady-state conditions of the -  filter are derived in Section 4.0, and the conclusions are pre-
sented in Section 5.0.

In this paper, matrices are denoted by capital letters, such as  or . The transpose of the matrix
 is denoted by  and the inverse by . All vectors are column vectors denoted in boldface

as .
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2.0  Brief introduction to - filter

This section is intended for the researchers who are unfamiliar to the -  filter but have been
studying stochastic processes and filtering theory in the state space. The state-space representa-
tion presented here will enable them to understand the structure of the -  filter and its potential
similarities to the Kalman filter. 

For radar systems, a target is tracked generally in three-dimensional space, e.g., in the x-y-z coor-
dinates. The first assumption is to simplify the structure of the -  filter: 

(A1): the target motion in one coordinate is independent from others.

This assumption is significant. It says that whatever happens in the y and z coordinates, the track-
ing in the x-coordinate is not influenced at all. 

The next assumption was made to simplify the analysis. For radars, the sampling intervals are not
set equal for all the targets to conserve radar resources. Some targets may require more attention
compared to the others. Since we are interested in performance of the basic -  filter, we stick to
the following assumption:

(A2): the sampling interval  is constant.

The -  filter is defined by the equations [2,5,10,14,16]:

(1)

(2)

, (3)

(4)

where 

•  = smoothed position

•  = smoothed velocity/speed

•  = predicted position

•  = predicted velocity/speed

•  = measurement of position

Using (4), (2) may be replaced with

. (5)

Eliminating  from (1), (3),(4), and (5), we get

(6)

. (7)

Simplify the equations, the -  filter is given in the state-space as:
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. (8)

We can also eliminate  and  from (1), (2), (3), and (4), which results in

. (9)

Many papers do not specify the state-space equations that they assume [5,7,15] or some uses the
state-space equations such as [3,4,12]

. (10)

We will use (9) in this paper, since it is derived from the basic filter equations (1)-(5) and closely
resembles the Kalman filter. As for (10), we do not think it is valid since it cannot be derived from
(1)-(5). 

The Kalman filter for the discrete systems are defined, respectively, by

(11)

and

, (12)

where  denotes the white gaussian noise vector with mean zero and covariance matrix  and
 measurement gaussian noise with mean zeros and variance . The noise sequences  and
 are assumed independent. The system noise term  is often assumed to represent system

model error. 

The Kalman filter for (11) and (12) is defined as [1,17]

(13)

where the gain matrix is defined by

, (14)

the estimation error covariance matrix is updated according to

, (15)

where we assume here that the initial conditions for (13) and (15) are appropriately set.

Comparing (9) and (13), we can set the following

• the state vector , where  and  denote the position and veloc-
ity/speed of the target at time 

• the estimation output 

• the matrices  and  can be set to
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 and (16)

• the matrix  is set to

. (17)

We can confirm that  is a  vector by examining the dimensions of the matrices  and . 

Since this is important, we specify it as an assumption:

(A3): the dimensions of  and  are, respectively,  and .

We will derive the two classical results concerning the -  filter in Sections 3.0 and 4.0. Specif-
ically, we will derive the parameters of  and  in a closed-form depending on the structure of
the Kalman filter (13)-(17). Then we will study the conditions required for the -  parameters in
the steady state. 

3.0  Closed form -  filter
There are not many reports that derived the -  filter directly from the Kalman filter. For exam-
ple, a closed form solution of the parameters of  and  is considered in [10] where the target
motion is assumed to follow a linear track. The solution is derived by minimizing the square error
between the estimates and true track. 

Since we are examining the connections between the -  and Kalman filters, we will derive a
closed-form solution depending on the Kalman filter equations (13)-(17). A closed-form solution
derived form the Kalman filter is found in [4], but only final results are presented without the
background derivations. In [12], a closed-form -  filter is derived from the Kalman filter,
assuming (10) as the state space representation. 

We adapted, however, the two significant assumptions of [12] in the next section. We will inspect
whether or not such assumptions are theoretically and practically acceptable or valid at the end of
this section. 

3.1  Derivation of close-form  and  parameters
We start introducing an assumption from [12]:

(A4): the system noise is set as  in (11), i.e., . 

Set  in (15) and simplify it using the matrix inversion formula (see for examine [17]) as:

, (18)

where the inverse of  is set for simplicity to:

. (19)

We introduce here the Kronecker product [6] to solve (18) for . (see Appendix for some prop-
erties of the Kronecker product.)

Consider a matrix , where ,  are column vectors. We define the
 operator for  by 
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 . (20)

Applying the  operator to both sides of (18), we get [3]

, (21)

where  denotes the Kronecker product of matrices of  and . It is defined by

, (22)

where the dimension of  is assumed as . We can compute: 

 and , (23)

where the variance of the measurement noise is set to .

Let us set  to

.

We can get the equations to update ,  from (21) and (23) by equating the vector
components of the left and right sides of (21) as:

.

Closed form for ,  can be derived from these equations:

(24)

(25)

. (26)

Substituting (24) to (26) into  and inverting it, we can compute the error covariance matrix .

We set the initial conditions for , following [12], to: 

(A5): .

The reason behind (A5) is the assumption that there is no a priori information on the initial state.
Thus . We will discuss this assumption in Section 3.2.
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The estimation error covariance matrix  can be computed under (A5) as:

. (27)

Substitute (27) into the Kalman gain  of (14), then the parameters  and  can be computed
as

 and (28)

If (8) is used instead of (9), the same closed-form of  and  as in (28) are derived.

3.2  Examination of the closed form solution
Assuming the structure of the Kalman filter equations (13) - (15), the feedback parameters of 
and  are derived in (28). We would like closely examine the implications of the closed-form
solution and assumptions of (A1) - (A5).

(A1) clearly sets a limitation on the applicability of the -  filter since the three-dimensional
coordinates of the target position are not independent even for radar measurements [9]. There is
no such constraint for the Kalman filter.

(A3) is crucial for the -  filter. The observation matrix  must be a row vector. Otherwise the
gain matrix  cannot be defined in terms of two variables  and . Kalman filter does not
have such a restriction.

(A4) is also crucial in order to derive closed form solution (28). Recalling that  represents the
system model error, this assumption is impractical as mentioned in [12].

(A5) requires a close attention. It implies that  as the initial condition, which was derived
from the assumption that no information on the initial states is available and all components of the
estimation error covariance matrix  should be set to . Mathematically, it does not make a
sense. Since  by definition where  is an identity matrix,  and  essen-
tially mean that . It is obvious that such an  matrix cannot be the initial error covari-
ance matrix for (15).

Let us consider the implications of the closed-form solution (28). It is obvious from these equa-
tions that both  and  converge to 0 as , indicating that the -  filter eventually
ignores the measurements. The error covariance  converges to a 0 matrix as evident in (27),
which implies that estimation error will be eventually equal to zero. Unless the closed-form -
filter converges “quickly” to the true state, the convergence of  and  to 0 does not make a
sense.

Some papers present a closed-form of the -  filter different from (28). For example, assuming
(10) as the state space representation [4], they are given as:

 and . (29)

Both  and  also converge to 0 as  in this case. An interesting thing to notice is either
(28) or (29) are not a function of the initial data of  or . Independence of (28) from the ini-
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would be a function of the initial data. We may conclude that if the closed-form is derived starting
with the Kalman filter, it is necessary to make an assumption equivalent to (A5) in order that the
closed-form is free of the initial data. Due to such undependable theoretical basis and unsustain-
able assumptions, the close-form -  filter is not a trusty filter.

We now turn our attention to the constant -  filter. Many papers [2,4,9,10,14] focus on its
steady state conditions, which is our next topic. 

4.0  Steady-state conditions for constant - filter

In this section, we assume that both  and  are constants and real-valued. We derive the nec-
essary and sufficient conditions required for the parameters  and  to satisfy in the steady state.

Equation (9) can be reduced to: 

. (30)

Equation (30) was used in [5] to study the steady state conditions of the -  filter. 

Let us set the state vector to:

. (31)

Equation (30) can be written as

, (32)

where

 and . (33)

The necessary and sufficient condition for the -  filter to be bounded-input and bounded-out-
put (BIBO) stable is presented in [10, 16] as

 and . (34)

Since the second inequality implies that , (34) should be interpreted as 

 and .

Let us set  in (30). We get

.

The equation indicates that the position estimate will not fed-back to update it, which implies that
the condition  is not sufficient and requires some refinements. It is one of the motiva-
tions for the present paper to further investigate into the steady state conditions of the -  filter. 

Let   denote the true state corresponding to the estimation vector (31). 

 

 

k k
 

xs k 1+ 

vs k 1+ 

1 –  1 – Ts


Ts
-----– 1 – 

xs k 

vs k 



T
---

yk 1++=

 

z k 
xs k 

vs k 
=

z k 1+  Fz k  byk 1++=

F
1 –  1 – Ts


Ts
-----– 1 – 

= b


T
---

=

 

0  0  4 2– 
 2

0  2  0  4 2– 
 1=

xs k 1+ 

vs k 1+ 

0 0


Ts
-----– 1 – 

xs k 

vs k 

1


T
---

yk 1++=

0  2 
 

zt 2 1 
                                                                                           9



We make an assumptions following [5, 16]:

(A6): the true target is updated according to:

. (35)

This assumption is the same as (A4). Since we need the update equation for the true state, we state
it here as an assumption.

(A7):  is white gaussian sequence of zero mean and variance .

The frequency response is often employed to examine the filter responses to noise input. In order
to compute the frequency response for stationary random signals, the auto- and cross-covariances
of the input and output signals are computed. The z-transform is then applied to these covariances
to compute the frequency spectrums for the output signals and the transfer functions between
input and output [13]. 

In [14,16], (1)-(4) or (30) are regarded as a filter parameterized by  and  with a deterministic
input signal, and the z-transform was directly applied to compute the transfer function in the z-
domain. Setting the input  to a white noise as in (A7) is to examine the degree to which the so-
derived filter in the z-domain is affected by noise. 

The process of computing the auto- and cross-covariances of the input and output signals and then
applying the z-transform to them may is often complicated. The reason that the z-transform is
applied in [14,16] is to analyze the influence of the feedback loop in (1)-(4) or (30).

In this paper, the state space analysis techniques of linear stochastic systems are applied. It is eas-
ier to analyze performance of the stochastic systems in the time-domain, since the analysis of the
feedback loops is replaced with the techniques of linear algebra.

4.1  Derivation of output error covariance matrix

The estimation error covariance is derived for the -  filter in the time domain in this section.
The resultant covariance matrix will be used to analyze the stability of the filter. 

Let us denote the estimation error by
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(42)

. (43)

If we assume  converges to  as . We then have from (41)

, (44)

where  denotes an  identity matrix.

We first consider the conditions for the convergence of (41), and then consider the conditions for
the converged covariance matrix  to be positive-definite.
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The equation can be simplified to:

. (49)

Equation (48) is simplified to

, (50)

where it is assume that
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Combining (49) and (51), we get
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.

After simplification of these two inequalities, we get

, and (57)

, (58)

where it is assumed that

. (59)

Since  holds if , (56) and (57) are reduced, respectively, to
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. (72)

The constraint (71) can be reduced to

. (73)

The matrix  is positive definite if and only if

holds for an arbitrary  vector .

Let us set . Substituting (67)-(69) into , we get after simplification
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Case 1:

 and

Case2:

 and

Combining Cases 1 and 2, we get

 and . (82)

The BIBO conditions (76) and (77) presented in [10] are refined to (82) by considering the con-
vergence requirement for (40) and positive definiteness of the converged error matrix .

4.3.2  Examination of the steady-state - filter

In order that the steady error covariance converges  as , we have to considered:

• Does (40) converges as ?

• Is the convergent error covariance  positive-definite?

These considerations resulted in the conditions (82), which is a refinement of the BIBO stability
condition (34).

Note that (82) is derived under the assumptions (A5) and (A6). According to (A6), the measure-
ments  is set to a white Gaussian noise sequence. This assumption is equivalent to setting the
measurement matrix  in the definition of the discrete system (12) and (13). If  is
substituted in (14) and (15),  results and the Kalman filter loses the feedback loop. Such a
filter cannot be called a version of the Kalman filter.

The system noise  in (12) is also ignored under (A5). Note that one of the features of the Kal-
man filter is that it can estimate/track the states of the stochastic systems.

5.0  Conclusions

We derived the closed-form -  filter starting with the Kalman filter equations. We specified the
assumptions that are used to drive  and  as a function of only sampling time. As shown in
Section 3.0, the derivation depended on these unsustainable assumptions. We conclude that the
closed-form -  filter cannot be a version of the Kalman filter. 

The stability conditions of the -  filter was derived by setting the measurement term  equal
to a white gaussian noise, following [16]. As pointed out in Section 4.3.2, such an assumption dis-
regards the fundamental structure of the Kalman filter. 

It is concluded in this paper that the steady state -  filter should be considered as a completely
different filtering technique from the Kalman filter if the -  values are selected to satisfy (82).

It should be pointed out that there are techniques to compute the steady state feed-back gain
matrix  of the Kalman filter in a closed-from [11] without the assumptions (A1), (A3), (A4)
(A5), and (A7). Computational complexity is significantly high for the steady gain matrix of the
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Kalman filter compared to the steady state -  filter. Since the computation can be carried out
off-line, the computational cost is not a practical issue.

It is important from the engineering point of view, however, to determine which estimation tech-
nique should be selected, the Kalman filter or -  filter or other filters. It is beyond the scope of
the present paper to decide which technique should be used. Since computational cost is presently
rapidly reducing, estimation accuracy would be the primary concern. Estimation accuracy will be
determined by the accuracy how closely the system model describes the ground truth.

Finally, we would like to point out that Kronecker product significantly simplify the analysis of
feedback loop. Complicated derivation of the z-transforms of the auto- and cross-covariances of
the input and output can be completely eliminated and enables to directly examine the influence
of the random process on the estimation algorithms.
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Appendix

Since Kronecker product may be unfamiliar, properties that are used in this paper are presented
here as lemmas without proof. It is assumed that the dimensions of all matrices  and  in
this appendix are appropriately defined. The proofs of all of these lemmas are found in many text
books (e.g., [6].)

Lemma 1. 

Lemma 2. , where  is a scalor.

Lemma 3. The matrix equation  is equivalent to .

A B C  X

vec A B+  vecA vecB+=

A  B A B = 

AXB C= B
T

A vec X  vec C =
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