
SAPT

第7回知能化分科会

一色 浩

（SAPT知能化分科会長）

2018.07.14

SAPT電子会議室C

目 次

0. 復習…誤差逆伝播学習とは

１．瀧 雅人著 「これならわかる深層学習」

2．飲み会の代わり…自由討論

復習…誤差逆伝播学習とは

学習理論

計算機アルゴリズム研究会，「C言語による実用ニューロ･
コンピューティング」，ラッセル社，(1992)

N+1層の階層NN

通常の
ニューロン

出力1の
ニューロン

入力層（0）
中間層（1）

中間層(2) 中間層（N-１） 出力層(N)

（3.1.1）

（3.1.2）

(1) () () ()() ()n n n n

j ji i j

i

u p w v p    （3.1.3）

(0,1,2, , 1) :p p P 
(0) () :iv p

学習パターン

入力層ユニットiのパターンpに対する出力

入力層では，入力＝出力
() () :n

iu p () () :n

iv p中間層入力 中間層出力

学習誤差：

() :n

jiw チャンネルj-iのウェイト
() :n

j ユニットjの閾値

第n+1層のユニットjの入力：

()
p

E E p
2

()1
() () ()

2

N

j j

j

E p t p v p   

 (1) (1)() ()n n

j jv p h u p  （3.1.4）

（3.1.5）

(1)

(1)

()
()

()

n

j n

j

E p
p

u p
 




 


（3.1.6）

(1)

(1)

() (1) ()

()() ()
() 1

()

n

j n

jn n n

j j j

u pE p E p
p

u p


 







 
   

  
（3.1.7）

第n+1層のユニットjの出力：

式(3.1.3)より， は にしか含まれないので
()n

jiw (1)n

ju 

第n+1層のユニットjのパターンpに対する誤
差と呼ぶ．

(1) () :n

j p 

同様に：

(1)

(1) ()

() (1) ()

()() ()
() ()

()

n

j n n

j in n n

ji j ji

u pE p E p
p v p

w u p w








 
  

  

式（3.1.4）より

 
(1)

(1) (1)

(1) (1) (1)

()() ()
() ()

() () ()

n

jn n

j jn n n

j j j

dv pE p E p
p h u p

v p du p v p




 

  

 
   

 

（3.1.8）
2乗誤差を仮定してるので，出力層のときには

()

()

()
() ()

()

N

j jN

j

E p
t p v p

v p


    

（3.1.9）

中間層の場合には式（3.1.6）より
(2)

(2) (2)

(1) (2) (1)

()() ()
()

() () ()

n
n nk

k k jn n n
k kj k j

u pE p E p
p w

v p u p v p



 

  

 
  

  
 

（3.1.11）

式（3.1.9）を式（3.1.8）に代入すれば

（3.1.10）  () () ()() () () ()N N N

j j j jp h u p t p v p     

なので，式（3.1.6）より

（3.1.12）

（3.1.13,14）

()

()

1 ()n

ji wn
p ji

E p
w

P w


 
      

 ()

()

1 ()n

p i on
p i

E p

P
 



 
    

 


（3.1.15,16）

となる．すなわち，パターンpに対する第n+1層のユ
ニットjの誤差 は第n+2層の から
伝播されたもの．これが誤差逆伝播法の名前の由来．

(1) ()n

j p  (1) ()n

j p 

最急降下法による修正：

一括修正の場合は：

 (1) (1) (2) (2)() () ()n n n n

j j k kj

k

p h u p p w     

()

()

()n

p ji wn

ji

E p
w

w



  


()

()

()n

p i on

i

E p
 




  



 () (1) ()

()

1 ()n n

ji w jin
p ji

E p
w w

P w
 

 
       



 () (1) ()

()

1 ()n n

i o in
p i

E p

P
   




 

     
 



（3.1.17）

（3.1.18）

(1) (1)when A        
(1)whenA A    

（3.1.19a）

（3.1.19b）

さらに，1ステップ前の修正量 と の

影響を加味すると，効果的な修正が期待できる．ただ
し，修正の最終段階では，前回と同じように修正する．

(1) ()n

jiw (1) ()n

j


 は慣性係数と呼ばれる定数であるが，前ステップ
の値を ，増分を として


(1)  

 () 1 1 uh u e u    

()(1) 1uh u e 

() ()(1 ())h u h u h u  

（3.1.20）

（3.1.21）

（3.1.22）

最急降下法は一定ステップの探索法であるので，以
下のような欠点が指摘されている．

(1) 局所的最小値に捕まると，そこから抜け出せない．
大域的最小値に収束する保証がない．

(2) 最小値近傍では修正量がほとんど0となるので，

収束が悪い．一括完成修正法も十分な解決を与えて
いない．

ユニットの出力関数としては，シグモイド関数がある：

シグモイド関数には以下のような便利な関係がある：

C言語によるコード例（RTINY.c … 来週配布）

計算条件を出力ファイルへ記録

void main()

{

 read_system_data();

 read_param();

 read_input_data();

 read_teach_data();

 initialize_weight();

 initialize_offset();

 fp_out = open_output_file();

 save_all_1(fp_out);

システムデータの読み込み

パラメータの読み込み

入力データの読み込み

教師データの読み込み

ウェイト初期値の設定

オフセット初期値の設定

出力ファイルの設定

メイン関数

loop = 0;

while (loop < iteration_lmt) {

 error = 0.0;

 for (p = 0; p < NT; p++) {

 forward(p);

 delta(p);

 }

 correct_weight();

 print_error(loop);

 save_all_2(fp_out, loop);

 if ((error / NT / OU < error_lmt))

 alpha += dalpha;

 loop++;

} /* LOOP END */

繰り返しループ開始

NN順方向計算

NN逆方向誤差計算

ウェイトの修正

エラーの記録

教師データの数だけ繰り返し

繰り返しループ終了

慣性収束の手続き

for (p = 0; p < NT; p++)

 forward(p);

 save_all_3(fp_out);

 close_output_file(fp_out); /

 quit();

}

NN順方向計算

計算結果を出力ファイルへ記録

結果を計算

出力ファイルを閉じる

終了

// -----------------------------順方向の計算---------------------------- //

void forward(p)

int p;

{

 int i, j;

 for (i = 0; i < IU; i++) {

 O_I[p][i] = input_data[p].input[i];

 }

 for (j = 0; j < HU; j++) {

 NET_H[p][j] = 0.0;

 for (i = 0; i < IU; i++)

 NET_H[p][j] += W_H_I[j][i] * O_I[p][i];

 NET_H[p][j] += OFF_H[j];

 O_H[p][j] = sigmoid(NET_H[p][j]);

 }

入力層出力

隠れ層入力の計算

隠れ層出力の計算

for (j = 0; j < OU; j++) {

 NET_O[p][j] = 0.0;

 for (i = 0; i < HU; i++)

 NET_O[p][j] += (W_O_H[j][i] * O_H[p][i]);

 NET_O[p][j] += OFF_O[j];

 O_O[p][j] = sigmoid(NET_O[p][j]);

 }

}

出力層入力の計算

出力層出力の計算

/// ------------------------------誤差の計算----------------------------- //

void delta(p)

int p;

{

 int j, k; double sum;

 for (j = 0; j < OU; j++) {

 DELTA_O[p][j] = (teach_data[p].teach[j] - O_O[p][j])

 * u0 * O_O[p][j] * (1.0 - O_O[p][j]);

 error += (fabs(teach_data[p].teach[j] - O_O[p][j]));

 }

 for (j = 0; j < HU; j++) {

 sum = 0.0;

 for (k = 0; k < OU; k++)

 sum += DELTA_O[p][k] * W_O_H[k][j];

 DELTA_H[p][j] = 2.0 / u0 * O_H[p][j] * (1.0 - O_H[p][j]) * sum;

 }

}

出力層の誤差計算

隠れ層の誤差計算

// ---------------------------慣性法／荷重更新-------------------------- //

void correct_weight()

{

 int i, j, p; double sum;

 for (j = 0; j < OU; j++) {

 for (i = 0; i < HU; i++) {

 sum = 0.0;

 for (p = 0; p < NT; p++)

 sum += DELTA_O[p][j] * O_H[p][i];

 DW_O_H[j][i] = eta_wgt * sum

 + alpha * DW_O_H[j][i];

 W_O_H[j][i] += DW_O_H[j][i];

 }

 sum = 0.0;

 for (p = 0; p < NT; p++)

 sum += DELTA_O[p][j] * 1.0;

 DOFF_O[j] = eta_wgt * sum

 + alpha * DOFF_O[j];

 OFF_O[j] += DOFF_O[j];

 }

出力層･隠れ層間のウェイト修正

出力層のオフセット修正

一括修正

慣性修正

一括修正

慣性修正

 for (j = 0; j < HU; j++) {

 for (i = 0; i < IU; i++) {

 sum = 0.0;

 for (p = 0; p < NT; p++)

 sum += DELTA_H[p][j] * O_I[p][i];

 DW_H_I[j][i] = eta_wgt * sum

 + alpha * DW_H_I[j][i];

 W_H_I[j][i] += DW_H_I[j][i];

 }

 sum = 0.0;

 for (p = 0; p < NT; p++)

 sum += DELTA_H[p][j] * 1.0;

 DOFF_H[j] = eta_wgt * sum

 + alpha * DOFF_H[j];

 OFF_H[j] += DOFF_H[j];

 }

}

隠れ層･入力層間のウェイト修正

隠れ層のオフセット修正

一括修正

一括修正

慣性修正

慣性修正

RTINY.c による計算結果1

AND, OR, XORの計算

計算条件
システムデータ

計算パラメータ

入力データ

教師データ

IU = 2

HU = 2

OU = 3

NT = 4

(1) 0, 0

(2) 1, 0

(3) 0, 1

(4) 1, 1

(1) 0, 0, 0

(2) 0, 1, 1

(3) 0, 1, 1

(4) 1, 1, 0

u0 0.6

inival_wgt 0.3

inival_off 0.2

eta_wgt 0.8

eta_off 0.6

alpha 0.3

dalpha 0.01

alpha_lmt 0.9

error_lmt 0.005

iteration_lmt 1000

入力値 入力値 出力値 出力値 出力値

ユニット０
 ユニット
１

 ユニット
０

 ユニット
１

 ユニット
２

 AND OR XOR

0 0 0 0.02 0.04

1 0 0.02 0.98 0.97

0 1 0.02 0.98 0.97

1 1 0.98 1 0.04

出力結果

(a) AND (b) OR

(c) XOR

AND, OR, XOR で
できる曲面

系列1

系列8

系列15
0

0.5

1

1 3 5 7 9 11 13 15 17 19

0.5-1

0-0.5

系列1

系列8

系列15
0

0.5

1

1 3 5 7 9 11 13 15 17 19

0.5-1

0-0.5

系列1

系列8

系列15
0

0.5

1

1 3 5 7 9 11 13 15 17 19

0.5-1

0-0.5

x
y

z

z

z

x

x

y

y

RTINY.c による計算結果2（シグモイド→ReLU）

入力値 入力値 出力値 出力値 出力値

ユニット０ ユニット１ ユニット０ ユニット１ ユニット２

 AND OR XOR

0 0 0 0.29 0

1 0 0.19 0.73 0

0 1 0.04 0.84 0

1 1 0.88 1.21 0

XOR（線形不分離）が解けなくなる．

7 自己符号化器

7.1 データ圧縮と主成分分析

瀧 雅人著 「これならわかる深層学習」

4 勾配降下法による学習

5 深層学習の正規化

6 誤差逆伝播法

今回の講義では，以下の各章を取りあへず省略する．

64×64ピクセルの小さな白黒画像でも4096次元．た
だし，データ点の分布は均一ではなく，粗密がある．

図7.1は単純なケースで，(a)では 方向には分散が大
きく， 方向には分散が小さい．

1x

2x

データが広がっている方向は分散で特定できる．

図7.1 (a)は2次元空間中のデータの偏り．(b)は高次元空間中

 での，平坦部分空間への散布の偏り

(a) (b)

このような解析法を主成分分析（principal component

analysis, PCA）という．

とする．図7.1bのように平坦な部分空間は，元来の座
標軸の方向を向いていない．

データ点をベクトル．

1 2()T

Dx x xx （7.1）

この方向とそれに直交する方向の正規直行基底を

1 2, , , de e e （7.2）

とする．これらは分散の大きい順に取られているものと
する．この基底ベクトルの決定法を述べる．

 0 0

1

()
d

T

n h n h

h

  x c e x c e （7.3）

任意のデータ点 をこの部分空間に射影する． nx

ここで， とする． 0 nn
Nc x

右辺で与えた射影がなるべく左辺を近似するために
は，二乗誤差を最小にすれば良い．すなわち

 
2

0 0 0

1 1

(,) () ()
N d

T

h n h n h

n h

E
 

 
    

 
 c e x c e x c e （7.4）

として以下の最小値問題を解くことになる：

0
0

,
min (,)

h
hE

c e
c e （7.5）

簡単のために， とする．さらに 0n n  x x c

1 2()T

dΓ e e e （7.6）

という 行列を導入し， 射影行列を定義する: D d D D
TP Γ Γ （7.7）

T P P
2 T T T T

D d d d d D     P Γ ΓΓ Γ Γ I Γ Γ Γ P

であるので，式(7.4)の第2項は

基底ベクトルが正規直交であることを用いると， を単
位行列として

I

1 1

() ()
d d

T T T

h n h h h n n n

h h 

       e x e e e x Γ Γ x P x
（7.8）

と書ける．式（7.4）に代入すると

2

1 1

1

() () ()

()

N N
T T

n n n n

n n

N
T

n n

n

E
 



        

   

 



x P x x I P I P x

x I P x （7.9）

0c であるので に関する最小化は 0n n  x x c

1 10

0 2 () 2()
N N

n n

n n

E

c  


        


 I P x I P x （7.10）

であるので，式（7.4）に代入すると
1

0
N

nn
  x

より， となる． 0 1

N

nn
c N


 x

簡単のために以下では とする．すると誤差関数は 0 0c

2 2

1 1 1 1

() ()
N N N d

T T

n n n n h h

n n n h

E N
   

      x x Px x e Φe

（7.11） と書ける．ここで は共分散行列： Φ

1

1 N

ni nj

n

x x
N 

 Φ

1 1 1 1

1 1N N d d
T T

n n nh nh h h

n n h h

x x
N N

 

   

 x Px e Pe

T T T

h h h h e Pe e Γ Γe

（a）

（b）

)

つぎに， について考える． he

 

1

2

1 2

h

h T T

h h h h dh

dh




  



   

 
 
  
 
 
 

Γe e Γ

1 1 1 1 1

N N d d N
T

n n nh nh ih jh ni nj

n n h h n

x x x x  

    

   x Px

（c）

 T T

h h ih jh  e Γ Γe （d）

（e）

QED
したがって主成分分析とは

2

1

max subject to () 1
h

d
T

h h h

h


e

e Φe e （7.12）

ラグランジュの未定乗数法を用いると

 2

1 1

(,) () 1
d d

T

h h h h h h

h h

L  
 

   e e Φe e （7.13）

これより
1

0
2

h h h

h

L



  


Φe e

e
（7.14）

すなわち，共分散行列 の固有値問題に他ならない． Φ

式（7.11）から明らかなように は なので，固有
ベクトルはD個あり得るが，大きい方からd個を取る．

Φ D D

7.2 自己符号化器

7.2.1 砂時計型ニューラルネット

主成分分析はデータが散在する平坦な（すなわち線型
の）部分空間を探すが，実際のデータは平坦な部分空
間ではなく曲面に散布している．このような部分空間を
多様体と呼び，多様体上へデータの次元削減をするア
プローチを多様体学習という．

汎用的な表現能力を持つニューラルネットは多様体学
習に役立つ．

階層型ニューラルネットで有用な表現を生み出す簡単
な方法がある．

図7.2（左）に示される左右対象な砂時計型NNである．

図7.2 砂時計型ニューラルネットによる自己符号化器の作成

出力層には入力データと同じ教師データを与える．

ˆ() ()f f     x y Wx b x Wx b （7.16）
前半の変換操作 を符号化と呼び，前半2層を符
号化器と呼ぶ．符号化器の出力 は符号と呼ばれる．

x y

y

この砂時計型NNの学習は，入力 が出力 がで
きる限り に近づくように行われる．

ˆ()nx xnx

nx

入力自身の符合を作りそれを復号するので自己符号
化器と呼ばれる．

7.2.2 再構成誤差による学習

（1） 実数値入力

入力 が実数値の場合には，出力層は線形ユニットを
用いる．したがって活性化関数 は恒等演算です．

x

f

誤差関数は平均二乗誤差です．

2

1

1
ˆ(,) (())

2

N

n n

n

E


 W W x x y （7.17）

（2） 2値入力

 の成分が0か1の場合，出力層にはシ
グモイドユニットを用いる．図7.2（左）に示される左右対
象な砂時計型NNである． は入力成分数個のシグモ
イド関数である．

11(, ,)T

dx xx

f

そのそれぞれが の予測値 ix

ˆ ˆ() (1|) ?i ix P x x x （7.18）

を出力する．学習は対数尤度関数：
1

ˆ ˆ1

1

ˆ ˆ ˆ(|) (1|) (1 (1|))i i

d
x x

i i

i

P P x P x




   x x x x （7.19）

により行われる．つまり交差エントロピーの和を用いる：

    
1

1 1

ˆ ˆ(,) log (1) log(1)
dN

ni i n ni i n

n i

E x x x x
 

    W W x x

（7.20）

自己符号化器の誤差は再構成誤差と呼ばれる．

（7.21） ji ijw w

すべての重みを自由パラメータとすると過剰なので，正
則化として下記の重み共有を課す．

7.2.3 符号化器の役割

符号化器の役割についての考察が述べられているが，
仮定が大き過ぎてよく理解できない．

7.2.4 自己符号化器と主成分分析

f活性化関数 と が恒等写像のとき，再構成誤差
(7.26)が主成分分析の誤差（7.9）と同様な形になる． ．

f

すなわち，この場合の自己符号化器はまさに主成分分
析を行っているという主張であるが，仮定が大き過ぎ
る．
理論的検討は重要であるが，数値計算などで数値的
に裏付ける方が分かり易いと思われる．

7.3 スパース自己符号化器
7.3.1 自己符号化器のスパース化

これまでは入力層のユニット数 が中間層のユニット数

 よりも大きな場合（ ）を述べたが，逆の場合

（ ）にも，ある条件の下でデータ圧縮が可能．

1d

2d 1 2d d

1 2d d

安易に行うと恒等写像を学習してしまい無意味になる
が，中間層の大半がどんな入力に対しても0しか出力し
ないスパース化というアイデアがある．

以下，我々のような初心者には馴染みにくい理論展
開になるので省略する．

7.3.2 スパース自己符号化器の誤差逆伝播法

省略

7.4 積層自己符号化器と事前学習
7.4.1 積層自己符号化器

NNには勾配消失問題が起こるため，図7.3のような
多層の深層自己符号化器を学習させることは困難．

図7.3 4層からなる多層の符号化器

中間層が1層の場合は勾配消失問題の害を受けない．

問題なく学習できる浅い符号化器を活用を考える．

そこで2つの隣接層 を取り出す．
() (1)l lz z

そして多層の符号化器を2層の符号化器の集まりと
みなす．

図7.4 多層符号化器の層ごとの貪欲法による学習

（1） まず1，２層だけを取り出し，これに入力層と同じ
ユニット数の層を加える．これを訓練データ で学
習させる．これで得られた符号を とする．

{ }nx
(2){ }nz

（2） つぎに2，3層を取り出し，出力層をおいて自己
符号化の学習をさせる．その際の訓練データは

で，新たにできた符号を とする．

(2){ }nz
(3){ }nz

（3） この操作を上層に向かって繰り返す．

（4） 出力層まで学習が終わったら，各段階で得られ
た学習済重みを全体の重みとして採用する．

この学習法を層ごとの貪欲法といい，貪欲法でできた
自己符号化器を積層自己符号化器（SAE）という．

SAEは入力データの良い表現（符合）を獲得している
と期待できる．

例えばエンの率いるGoogleチームが，SAEを用いた

画像の教師なし学習で，猫などの個別の対象のみに
反応する「おばあさん細胞」を実現した．いわゆる
Googleの猫である．

7.4.2 事前学習

多層NNの学習では，勾配法を適用する誤差関数が
うねうねしているので，なかなか学習が進まない．

学習を進める重要なトリックがパラメータの初期値選
択である．SAEはよい初期値を与ると考えられる．

他にもプラトーや勾配消失問題がある．

L層の深層NNを考える．出力層は回帰分析をするの
で，L-1層までSAEとして貪欲法で学習させ，その重
みパラメータを深層NNの初期値とする．

その上でL-1層とL層の間の重みはランダムに選び，
深層NN全体を通常の誤差逆伝播法で学習させる．

すると学習が大幅に加速することが経験的に知られ
ている．

この事前学習はベンジオ等により開発され，よく使わ
れたが，最近では事前学習に頼らない深層学習法が
登場したので，必ずしも最先端の研究現場で用いら
れていない．

7.5 デノイジング自己符号化器

NNはノイズに対してロバストではない．

ノイズにより入力データを拡張した上で，自己符号化
器を学習させると，ロバストになることが期待される．

これをデノイジング自己符号化器（DAE）と呼ぶ．

入力サンプルの各成分 が実数値を取るとして，各
訓練サンプル ごとに，適当なガウスノイズ

 を乗せて，訓練データ で自己
符号化器を学習させる．

nix

nx ~nx
2(0,)N  { , }n n nx x x

ノイズが加わった入力 から，ノイズのない

を復元させるものである．
n nx x nx

図7.5にDAEを示す．

図7.5 欠落ノイズを加えた上段の画像をシンプルな

 単層DAEで処理した結果が下の画像．

7.６ 収縮自己符号化器

7.６.1 収縮自己符号化器と多様体学習

7.６.2 他の自己符号化器との関係

省略

省略

飲み会の代わり…自由討論

分科会運営方法に関するコメント

最近の世相，時代の潮流

夢：遠隔地音楽アンサンブル

 時間遅れをどう克服するか？

 音楽合奏に関する鍋島さんの経験

 ユニソンからアンサンブルへ

 ノイズキャンセラーが悪さをする？

 A, Bの2信号があると、一方が信号，他方

 がノイズになり、抑えられる。

年寄りは無条件にモノづくりは良いもの、楽しい
ものと信じている？若者の考え方は？

本田宗一郎や松下幸之助の生き方に共感？

夢：遠隔地音楽アンサンブル

 ヤマハNETDUETTO （宮竹さんからの情報）

 現行の通信回線でよい．

 各パーツの時間遅れを極力小さくする．

 ダウンロードの仕方

 NETDUETTOラボ http://netduetto.net/manual/

 ７月４日（水）に前田，澤井，鍋島の諸氏と一色で

 WiFi ではなくて，有線接続で実験しました．

 音の強弱，テンポが安定して，ようやく合奏出来

 る可能性が出てきました．遅れ時間80ms．

 新井先生から，オーディオ･インターフェースの仕

 組みのご報告をいただけるのを期待しています．

