Real-Time Loop Closure in 2D LIDAR SLAM

Wolfgang Hess!, Damon Kohler!, Holger Rapp!, Daniel Andor!

Abstract— Portable laser range-finders, further referred to as
LIDAR, and simultaneous localization and mapping (SLAM)
are an efficient method of acquiring as-built floor plans.
Generating and visualizing floor plans in real-time helps the
operator assess the quality and coverage of capture data. Build-
ing a portable capture platform necessitates operating under
limited computational resources. We present the approach used
in our backpack mapping platform which achieves real-time
mapping and loop closure at a 5 cm resolution. To achieve real-
time loop closure, we use a branch-and-bound approach for
computing scan-to-submap matches as constraints. We provide
experimental results and comparisons to other well known
approaches which show that, in terms of quality, our approach
is competitive with established techniques.

I. INTRODUCTION

As-built floor plans are useful for a variety of applications.
Manual surveys to collect this data for building management
tasks typically combine computed-aided design (CAD) with
laser tape measures. These methods are slow and, by em-
ploying human preconceptions of buildings as collections
of straight lines, do not always accurately describe the true
nature of the space. Using SLAM, it is possible to swiftly
and accurately survey buildings of sizes and complexities that
would take orders of magnitude longer to survey manually.

Applying SLAM in this field is not a new idea and is
not the focus of this paper. Instead, the contribution of this
paper is a novel method for reducing the computational
requirements of computing loop closure constraints from
laser range data. This technique has enabled us to map
very large floors, tens-of-thousands of square meters, while
providing the operator fully optimized results in real-time.

II. RELATED WORK

Scan-to-scan matching is frequently used to compute
relative pose changes in laser-based SLAM approaches, for
example [1]-[4]. On its own, however, scan-to-scan matching
quickly accumulates error.

Scan-to-map matching helps limit this accumulation of
error. One such approach, which uses Gauss-Newton to find
local optima on a linearly interpolated map, is [5]. In the
presence of good initial estimates for the pose, provided in
this case by using a sufficiently high data rate LIDAR, locally
optimized scan-to-map matching is efficient and robust.
On unstable platforms, the laser fan is projected onto the
horizontal plane using an inertial measurement unit (IMU)
to estimate the orientation of gravity.

Pixel-accurate scan matching approaches, such as [1],
further reduce local error accumulation. Although compu-
tationally more expensive, this approach is also useful for

LAll authors are at Google.

loop closure detection. Some methods focus on improving
on the computational cost by matching on extracted features
from the laser scans [4]. Other approaches for loop closure
detection include histogram-based matching [6], feature de-
tection in scan data, and using machine learning [7].

Two common approaches for addressing the remaining
local error accumulation are particle filter and graph-based
SLAM [2], [8].

Particle filters must maintain a representation of the full
system state in each particle. For grid-based SLAM, this
quickly becomes resource intensive as maps become large;
e.g. one of our test cases is 22,000 m? collected over a 3km
trajectory. Smaller dimensional feature representations, such
as [9], which do not require a grid map for each particle, may
be used to reduce resource requirements. When an up-to-
date grid map is required, [10] suggests computing submaps,
which are updated only when necessary, such that the final
map is the rasterization of all submaps.

Graph-based approaches work over a collection of nodes
representing poses and features. Edges in the graph are con-
straints generated from observations. Various optimization
methods may be used to minimize the error introduced by
all constraints, e.g. [11], [12]. Such a system for outdoor
SLAM that uses a graph-based approach, local scan-to-scan
matching, and matching of overlapping local maps based on
histograms of submap features is described in [13].

III. SYSTEM OVERVIEW

Google’s Cartographer provides a real-time solution for
indoor mapping in the form of a sensor equipped backpack
that generates 2D grid maps with a » = 5 cm resolution. The
operator of the system can see the map being created while
walking through a building. Laser scans are inserted into a
submap at the best estimated position, which is assumed to be
sufficiently accurate for short periods of time. Scan matching
happens against a recent submap, so it only depends on
recent scans, and the error of pose estimates in the world
frame accumulates.

To achieve good performance with modest hardware re-
quirements, our SLAM approach does not employ a particle
filter. To cope with the accumulation of error, we regularly
run a pose optimization. When a submap is finished, that is
no new scans will be inserted into it anymore, it takes part
in scan matching for loop closure. All finished submaps and
scans are automatically considered for loop closure. If they
are close enough based on current pose estimates, a scan
matcher tries to find the scan in the submap. If a sufficiently
good match is found in a search window around the currently
estimated pose, it is added as a loop closing constraint to the

optimization problem. By completing the optimization every
few seconds, the experience of an operator is that loops are
closed immediately when a location is revisited. This leads
to the soft real-time constraint that the loop closure scan
matching has to happen quicker than new scans are added,
otherwise it falls behind noticeably. We achieve this by using
a branch-and-bound approach and several precomputed grids
per finished submap.

IV. LocAL 2D SLAM

Our system combines separate local and global approaches
to 2D SLAM. Both approaches optimize the pose, £ =
(€2, &y,&p) consisting of a (z,y) translation and a rotation
&p, of LIDAR observations, which are further referred to
as scans. On an unstable platform, such as our backpack,
an IMU is used to estimate the orientation of gravity for
projecting scans from the horizontally mounted LIDAR into
the 2D world.

In our local approach, each consecutive scan is matched
against a small chunk of the world, called a submap M,
using a non-linear optimization that aligns the scan with the
submap; this process is further referred to as scan matching.
Scan matching accumulates error over time that is later
removed by our global approach, which is described in
Section V.

A. Scans

Submap construction is the iterative process of repeatedly
aligning scan and submap coordinate frames, further referred
to as frames. With the origin of the scan at 0 € R2, we
now write the information about the scan points as H =
{hi}r=1,. K,hr € R The pose £ of the scan frame in the
submap frame is represented as the transformation T¢, which
rigidly transforms scan points from the scan frame into the
submap frame, defined as

_ [cos& —singy &a
Tep = (Sin&) cos &y > P <fu> ' M
N——
RE te
B. Submaps

A few consecutive scans are used to build a submap. These
submaps take the form of probability grids M : rZ X rZ —
[Prmins Pmax] Which map from discrete grid points at a given

Fig. 1. Grid points and associated pixels.

resolution r, for example 5 cm, to values. These values can be
thought of as the probability that a grid point is obstructed.
For each grid point, we define the corresponding pixel to
consist of all points that are closest to that grid point.

Whenever a scan is to be inserted into the probability grid,
a set of grid points for hits and a disjoint set for misses are
computed. For every hit, we insert the closest grid point into
the hit set. For every miss, we insert the grid point associated
with each pixel that intersects one of the rays between the
scan origin and each scan point, excluding grid points which
are already in the hit set. Every formerly unobserved grid
point is assigned a probability ppi Or ppiss if it is in one of
these sets. If the grid point x has already been observed, we
update the odds for hits and misses as

odds(p) = L, (2)

L—p
Myew () = clamp(odds ™ (odds(Mq(z)) - odds(pyic)))
3)

and equivalently for misses.

Fig. 2. A scan and pixels associated with hits (shaded and crossed out)
and misses (shaded only).

C. Ceres scan matching

Prior to inserting a scan into a submap, the scan pose £ is
optimized relative to the current local submap using a Ceres-
based [14] scan matcher. The scan matcher is responsible for
finding a scan pose that maximizes the probabilities at the
scan points in the submap. We cast this as a nonlinear least
squares problem

K

argmin Z (1- Msmooth(TEhk))2
k=1

(CS)

where T¢ transforms Ay, from the scan frame to the submap
frame according to the scan pose. The function Mmoot :
R? — R is a smooth version of the probability values in
the local submap. We use bicubic interpolation. As a result,
values outside the interval [0, 1] can occur but are considered
harmless.

Mathematical optimization of this smooth function usually
gives better precision than the resolution of the grid. Since
this is a local optimization, good initial estimates are re-
quired. An IMU capable of measuring angular velocities can
be used to estimate the rotational component 6 of the pose

between scan matches. A higher frequency of scan matches
or a pixel-accurate scan matching approach, although more
computationally intensive, can be used in the absence of an
IMU.

V. CLOSING LOOPS

As scans are only matched against a submap containing
a few recent scans, the approach described above slowly
accumulates error. For only a few dozen consecutive scans,
the accumulated error is small.

Larger spaces are handled by creating many small sub-
maps. Our approach, optimizing the poses of all scans and
submaps, follows Sparse Pose Adjustment [2]. The relative
poses where scans are inserted are stored in memory for use
in the loop closing optimization. In addition to these relative
poses, all other pairs consisting of a scan and a submap
are considered for loop closing once the submap no longer
changes. A scan matcher is run in the background and if
a good match is found, the corresponding relative pose is
added to the optimization problem.

A. Optimization problem

Loop closure optimization, like scan matching, is also
formulated as a nonlinear least squares problem which allows
easily adding residuals to take additional data into account.
Once every few seconds, we use Ceres [14] to compute a
solution to

1 .
argmin B Z p(E2(£§“, & Bijs fij))

g S —
, i

(SPA)

where the submap poses E™ = {&"};=1,.., and the scan
poses =5 = {g;}j:17___7" in the world are optimized given
some constraints. These constraints take the form of relative
poses &;; and associated covariance matrices X;;. For a pair
of submap ¢ and scan j, the pose &; describes where in
the submap coordinate frame the scan was matched. The
covariance matrices ;; can be evaluated, for example, fol-
lowing the approach in [15], or locally using the covariance
estimation feature of Ceres [14] with (CS). The residual E
for such a constraint is computed by

E (&, 6555, &5) = e(€8,€5:65) 755, (60, 653 6i5), (4

-1

e(&", &5 &ij) = &y — (ngnm(ti s tgj)) : (5)
;0 7;0

A loss function p, for example Huber loss, is used to
reduce the influence of outliers which can appear in (SPA)
when scan matching adds incorrect constraints to the opti-
mization problem. For example, this may happen in locally
symmetric environments, such as office cubicles. Alternative

approaches to outliers include [16].

B. Branch-and-bound scan matching

We are interested in the optimal, pixel-accurate match

K
5* = argmax Z Mnearest(Tﬁhk’)a (BBS)

EW ko

where W is the search window and M eaest 1S M extended
to all of R? by rounding its arguments to the nearest grid
point first, that is extending the value of a grid points to
the corresponding pixel. The quality of the match can be
improved further using (CS).

Efficiency is improved by carefully choosing step sizes.
We choose the angular step size Jy so that scan points at the
maximum range dy,,x do not move more than r, the width
of one pixel. Using the law of cosines, we derive

nax = | X (12l (6)
2
dp = arccos(1 — W) (7)

max
We compute an integral number of steps covering given
linear and angular search window sizes, e.g., W, = W, =

7m and Wy = 30°,
w, — {WW Cowy— Wﬂ wp = P‘ﬂ C®
r r dp

This leads to a finite set WV forming a search window
around an estimate &, placed in its center,

W = {~wWg, ..., wp} X {—wy,...,wy} x {—ws,...,we},
&)
W= {50 + (lea’r.jya(seje) : (]wa]ya]@) € W} (10)

A naive algorithm to find £* can easily be formulated, see
Algorithm 1, but for the search window sizes we have in
mind it would be far too slow.

Algorithm 1 Naive algorithm for (BBS)
best_score <+ —oo

for j, = —w, to w, do
for j, = —w, to w, do
for jo = —wy to wy do

score < Sy Mucarest(Teo s (v 7y 500))
if score > best_score then
match < o + (Tjaca ij7 60j0)
best_score < score
end if
end for
end for
end for
return best_score and match when set.

Instead, we use a branch and bound approach to efficiently
compute £* over larger search windows. See Algorithm 2 for
the generic approach. This approach was first suggested in
the context of mixed integer linear programs [17]. Literature
on the topic is extensive; see [18] for a short overview.

The main idea is to represent subsets of possibilities as
nodes in a tree where the root node represents all possible
solutions, W in our case. The children of each node form a
partition of their parent, so that they together represent the
same set of possibilities. The leaf nodes are singletons; each
represents a single feasible solution. Note that the algorithm
is exact. It provides the same solution as the naive approach,

as long as the score(c) of inner nodes ¢ is an upper bound
on the score of its elements. In that case, whenever a node
is bounded, a solution better than the best known solution
so far does not exist in this subtree.

To arrive at a concrete algorithm, we have to decide on
the method of node selection, branching, and computation
of upper bounds.

1) Node selection: Our algorithm uses depth-first search
(DFS) as the default choice in the absence of a better
alternative: The efficiency of the algorithm depends on a
large part of the tree being pruned. This depends on two
things: a good upper bound, and a good current solution. The
latter part is helped by DFS, which quickly evaluates many
leaf nodes. Since we do not want to add poor matches as
loop closing constraints, we also introduce a score threshold
below which we are not interested in the optimal solution.
Since in practice the threshold will not often be surpassed,
this reduces the importance of the node selection or finding
an initial heuristic solution. Regarding the order in which
the children are visited during the DFS, we compute the
upper bound on the score for each child, visiting the most
promising child node with the largest bound first. This
method is Algorithm 3.

2) Branching rule: Each node in the tree is described by
a tuple of integers ¢ = (¢, ¢y, o, cn) € Z*. Nodes at height
cp, combine up to 2°» x 2°» possible translations but represent
a specific rotation:

W, = ({(jx,m czZ?: (11)
Cy ij<cz+2ch
cR ST)
W, =W,NW. (12)

Algorithm 2 Generic branch and bound
best_score + —oo
C « Co
while C # () do
Select a node ¢ € C and remove it from the set.
if ¢ is a leaf node then
if score(c) > best_score then
solution < n
best_score < score(c)
end if
else
if score(c) > best_score then
Branch: Split ¢ into nodes C..
C+CuUC,.
else
Bound.
end if
end if
end while
return best_score and solution when set.

Algorithm 3 DFS branch and bound scan matcher for (BBS)
best_score < score_threshold
Compute and memorize a score for each element in Co.
Initialize a stack C with Cy sorted by score, the maximum
score at the top.
while C is not empty do
Pop ¢ from the stack C.
if score(c) > best_score then
if ¢ is a leaf node then
match < &,
best_score + score(c)
else
Branch: Split ¢ into nodes C..
Compute and memorize a score for each element
in C..
Push C. onto the stack C, sorted by score, the
maximum score last.
end if
end if
end while
return best_score and match when set.

Leaf nodes have height ¢, = 0, and correspond to feasible
solutions W 3 & = &y + (req, rey, docp).

In our formulation of Algorithm 3, the root node, encom-
passing all feasible solutions, does not explicitly appear and
branches into a set of initial nodes Cy at a fixed height hg
covering the search window

Woe = {—we + 2", : ju € 2,0 < 2", < 2w, },
Wo,y = {—wy + 2", : j, € Z,0 < 2", < 2w,},
Woo = {jo € Z: —wp < jo < wa},
Co = Woz X Woy X Woe x {ho}.
At a given node ¢ with ¢, > 1, we branch into up to four
children of height ¢, — 1
Cc= (({cz,cw + 271} x {cy, ¢y + 271

X cg) ﬂW) x {cp — 1}

13)

(14)

3) Computing upper bounds: The remaining part of the
branch and bound approach is an efficient way to compute
upper bounds at inner nodes, both in terms of computational
effort and in the quality of the bound. We use

K

Z ng Mnearest(ng hk)
k=1J€We

score(c) =

K
> max Maeares(Tt, hi) (15)
k=17€We
K
2 max Z Mnearest(ng hk)
JEWe
To be able to compute the maximum efficiently, we use
precomputed grids MS: Precomputing one grid per

precomp*
possible height ¢;, allows us to compute the score with effort

linear in the number of scan points. Note that, to be able to
do this, we also compute the maximum over W, which can
be larger than W, near the boundary of our search space.

K
SCOTG(C) = Z Mpcr’écomp(Tﬁchk)? (16)
k=1

max Mnearest(xl> yl) (17)
2’ €lz,a+r(2"—1)]

v Ely,y+r(2"—1)]

Mphrecomp (:17, y) =

with £, as before for the leaf nodes. Note that M}ﬁ'ecomp has
the same pixel structure as Meqrest but in each pixel storing
the maximum of the values of the 2" x 2" box of pixels
beginning there. An example of such precomputed grids is

given in Figure 3.

Fig. 3.

Precomputed grids of size 1, 4, 16 and 64.

To keep the computational effort for constructing the
precomputed grids low, we wait until a probability grid will
receive no further updates. Then we compute a collection of
precomputed grids, and start matching against it.

For each precomputed grid, we compute the maximum of
a 2" pixel wide row starting at each pixel. Using this inter-
mediate result, the next precomputed grid is then constructed.

The maximum of a changing collection of values can be
kept up-to-date in amortized O(1) if values are removed
in the order in which they have been added. Successive
maxima are kept in a deque that can be defined recursively
as containing the maximum of all values currently in the
collection followed by the list of successive maxima of all
values after the first occurrence of the maximum. For an
empty collection of values, this list is empty. Using this
approach, the precomputed grids can be computed in O(n)
where n is the number of pixels in each precomputed grids.

An alternative way to compute upper bounds is to compute
lower resolution probability grids, successively halving the
resolution, see [1]. Since the additional memory consumption
of our approach is acceptable, we prefer it over using lower
resolution probability grids which lead to worse bounds than
(15) and thus negatively impact performance.

VI. EXPERIMENTAL RESULTS

In this section, we present some results of our SLAM al-
gorithm computed from recorded sensor data using the same
online algorithms that are used interactively on the backpack.
First, we show results using data collected by the sensors

Fig. 4. Cartographer map of the 2nd floor of the Deutsches Museum.

of our Cartographer backpack in the Deutsches Museum in
Munich. Second, we demonstrate that our algorithms work
well with inexpensive hardware by using data collected from
a robotic vacuum cleaner sensor. Lastly, we show results
using the Radish data set [19] and compare ourselves to
published results.

A. Real-World Experiment: Deutsches Museum

Using data collected at the Deutsches Museum spanning
1,913 s of sensor data or 2,253 m (according to the computed
solution), we computed the map shown in Figure 4. On
a workstation with an Intel Xeon E5-1650 at 3.2 GHz,
our SLAM algorithm uses 1,018 s CPU time, using up to
2.2 GB of memory and up to 4 background threads for loop
closure scan matching. It finishes after 360 s wall clock time,
meaning it achieved 5.3 times real-time performance.

The generated graph for the loop closure optimization
consists of 11,456 nodes and 35,300 edges. The optimization
problem (SPA) is run every time a few nodes have been
added to the graph. A typical solution takes about 3 itera-
tions, and finishes in about 0.3 s.

Fig. 5. Cartographer map generated using Revo LDS sensor data.
TABLE I
QUANTITATIVE ERRORS WITH REVO LDS

Laser Tape Cartographer Error (absolute) Error (relative)
4.09 4.08 —0.01 -0.2%
5.40 5.43 +0.03 +0.6 %
8.67 8.74 +0.07 +0.8%
15.09 15.20 +0.11 +0.7%
15.12 15.23 +0.11 +0.7%

B. Real-World Experiment: Neato’s Revo LDS

Neato Robotics uses a laser distance sensor (LDS) called
Revo LDS [20] in their vacuum cleaners which costs under
$30. We captured data by pushing around the vacuum
cleaner on a trolley while taking scans at approximately 2 Hz
over its debug connection. Figure 5 shows the resulting 5 cm
resolution floor plan. To evaluate the quality of the floor plan,
we compare laser tape measurements for 5 straight lines to
the pixel distance in the resulting map as computed by a
drawing tool. The results are presented in Table I, all values
are in meters. The values are roughly in the expected order
of magnitude of one pixel at each end of the line.

C. Comparisons using the Radish data set

We compare our approach to others using the benchmark
measure suggested in [21], which compares the error in rela-
tive pose changes to manually curated ground truth relations.
Table II shows the results computed by our Cartographer
SLAM algorithm. For comparison, we quote results for
Graph Mapping (GM) from [21]. Additionally, we quote
more recently published results from [9] in Table III. All
errors are given in meters and degrees, either absolute or
squared, together with their standard deviation.

Each public data set was collected with a unique sensor
configuration that differs from our Cartographer backpack.
Therefore, various algorithmic parameters needed to be
adapted to produce reasonable results. In our experience, tun-
ing Cartographer is only required to match the algorithm to
the sensor configuration and not to the specific surroundings.

TABLE I

QUANTITATIVE COMPARISON OF ERROR WITH [21]

Cartographer GM
Aces
Absolute translational 0.0375 4+ 0.0426 0.044 + 0.044
Squared translational 0.0032 £ 0.0285 0.004 + 0.009
Absolute rotational 0.373 £ 0.469 04+£04
Squared rotational 0.359 + 3.696 0.3+0.8
Intel
Absolute translational 0.0229 4 0.0239 0.031 £ 0.026
Squared translational 0.0011 4 0.0040 0.002 £ 0.004
Absolute rotational 0.453 +1.335 1.3£4.7
Squared rotational 1.986 4+ 23.988 24.0 £ 166.1
MIT Killian Court
Absolute translational 0.0395 £ 0.0488 0.050 £ 0.056
Squared translational 0.0039 4+ 0.0144 0.006 £ 0.029
Absolute rotational 0.352 £ 0.353 0.5£0.5
Squared rotational 0.248 + 0.610 09+09
MIT CSAIL
Absolute translational 0.0319 4+ 0.0363 0.004 +£ 0.009
Squared translational 0.0023 +0.0099 0.0001 + 0.0005
Absolute rotational 0.369 + 0.365 0.05 £ 0.08
Squared rotational 0.270 £ 0.637 0.01 +£0.04
Freiburg bldg 79
Absolute translational 0.0452 4+ 0.0354 0.056 £ 0.042
Squared translational 0.0033 £ 0.0055 0.005 £ 0.011
Absolute rotational 0.538 £0.718 0.6 £0.6
Squared rotational 0.804 + 3.627 0.7+1.7
Freiburg hospital (local)
Absolute translational 0.1078 +0.1943 0.143 £ 0.180
Squared translational 0.0494 £+ 0.2831 0.053 £ 0.272
Absolute rotational 0.747 £ 2.047 09+22
Squared rotational 4.745 £ 40.081 5.5 £ 46.2
Freiburg hospital (global)
Absolute translational 5.2242 £ 6.6230 11.6 +11.9
Squared translational 71.0288 +£267.7715 276.1 £ 516.5
Absolute rotational 3.341 £ 4.797 6.3 £6.2
Squared rotational 34.107 £ 127.227 77.2+£154.8

Since each public data set has a unique sensor config-
uration, we cannot be sure that we did not also fit our
parameters to the specific locations. The only exception being
the Freiburg hospital data set where there are two separate
relations files. We tuned our parameters using the local
relations but also see good results on the global relations.

TABLE III
QUANTITATIVE COMPARISON OF ERROR WITH [9]

Cartographer Graph FLIRT

Intel

Absolute translational 0.0229 £ 0.0239 0.02 £0.02

Absolute rotational 0.453 +1.335 0.3+0.3
Freiburg bldg 79

Absolute translational 0.0452 £+ 0.0354 0.06 £ 0.09

Absolute rotational 0.538 +0.718 0.8+1.1
Freiburg hospital (local)

Absolute translational 0.1078 £ 0.1943 0.18 +£0.27

Absolute rotational 0.747 £+ 2.047 09+2.0
Freiburg hospital (global)

Absolute translational 5.2242 + 6.6230 8.3 +8.6

Absolute rotational 3.341 +4.797 5.0+5.3

TABLE IV
LOOP CLOSURE PRECISION

Test case No. of constraints Precision
Aces 971 98.1 %
Intel 5786 97.2%
MIT Killian Court 916 93.4%
MIT CSAIL 1857 94.1%
Freiburg bldg 79 412 99.8%
Freiburg hospital 554 77.3%
TABLE V
PERFORMANCE
Test case Data duration (s) Wall clock (s)
Aces 1366 41
Intel 2691 179
MIT Killian Court 7678 190
MIT CSAIL 424 35
Freiburg bldg 79 1061 62
Freiburg hospital 4820 10

The most significant differences between all data sets is
the frequency and quality of the laser scans as well as the
availability and quality of odometry.

Despite the relatively outdated sensor hardware used in the
public data sets, Cartographer SLAM consistently performs
within our expectations, even in the case of MIT CSAIL,
where we perform considerably worse than Graph Mapping.
For the Intel data set, we outperform Graph Mapping, but not
Graph FLIRT. For MIT Killian Court we outperform Graph
Mapping in all metrics. In all other cases, Cartographer
outperforms both Graph Mapping and Graph FLIRT in most
but not all metrics.

Since we add loop closure constraints between submaps
and scans, the data sets contain no ground truth for them. It
is also difficult to compare numbers with other approaches
based on scan-to-scan. Table IV shows the number of loop
closure constraints added for each test case (true and false
positives), as well as the precision, that is the fraction of true
positives. We determine the set of true positive constraints
to be the subset of all loop closure constraints which are
not violated by more than 20cm or 1° when we compute
(SPA). We see that while our scan-to-submap matching
procedure produces false positives which have to be handled
in the optimization (SPA), it manages to provide a sufficient
number of loop closure constraints in all test cases. Our use
of the Huber loss in (SPA) is one of the factors that renders
loop closure robust to outliers. In the Freiburg hospital case,
the choice of a low resolution and a low minimum score
for the loop closure detection produces a comparatively high
rate of false positives. The precision can be improved by
raising the minimum score for loop closure detection, but this
decreases the solution quality in some dimensions according
to ground truth. The authors believe that the ground truth
remains the better benchmark of final map quality.

The parameters of Cartographer’s SLAM were not tuned
for CPU performance. We still provide the wall clock times
in Table V which were again measured on a workstation with
an Intel Xeon E5-1650 at 3.2 GHz. We provide the duration

of the sensor data for comparison.

VII. CONCLUSIONS

In this paper, we presented and experimentally validated
a 2D SLAM system that combines scan-to-submap match-
ing with loop closure detection and graph optimization.
Individual submap trajectories are created using our local,
grid-based SLAM approach. In the background, all scans
are matched to nearby submaps using pixel-accurate scan
matching to create loop closure constraints. The constraint
graph of submap and scan poses is periodically optimized
in the background. The operator is presented with an up-
to-date preview of the final map as a GPU-accelerated
combination of finished submaps and the current submap.
We demonstrated that it is possible to run our algorithms on
modest hardware in real-time.

ACKNOWLEDGMENTS

This research has been validated through experiments
in the Deutsches Museum, Munich. The authors thank its
administration for supporting our work.

Comparisons were done using manually verified relations
and results from [21] which uses data from the Robotics
Data Set Repository (Radish) [19]. Thanks go to Patrick
Beeson, Dieter Fox, Dirk Hihnel, Mike Bosse, John Leonard,
Cyrill Stachniss for providing this data. The data for the
Freiburg University Hospital was provided by Bastian Steder,
Rainer Kiimmerle, Christian Dornhege, Michael Ruhnke,
Cyrill Stachniss, Giorgio Grisetti, and Alexander Kleiner.

REFERENCES

[1] E. Olson, “M3RSM: Many-to-many multi-resolution scan matching,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), June 2015.

[2] K. Konolige, G. Grisetti, R. Kiimmerle, W. Burgard, B. Limketkai,
and R. Vincent, “Sparse pose adjustment for 2D mapping,” in IROS,
Taipei, Taiwan, 10/2010 2010.

[3] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous robots, vol. 4, no. 4, pp. 333—
349, 1997.

[4] F. Martin, R. Triebel, L. Moreno, and R. Siegwart, “Two different
tools for three-dimensional mapping: DE-based scan matching and
feature-based loop detection,” Robotica, vol. 32, no. 01, pp. 1941,
2014.

[5] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible
and scalable SLAM system with full 3D motion estimation,” in
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). 1EEE, November 2011.

[6] M. Himstedt, J. Frost, S. Hellbach, H.-J. Bohme, and E. Maehle,
“Large scale place recognition in 2D LIDAR scans using geometrical
landmark relations,” in Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on. 1EEE, 2014, pp. 5030—
5035.

[7] K. Granstrom, T. B. Schon, J. I. Nieto, and F. T. Ramos, “Learning to
close loops from range data,” The International Journal of Robotics
Research, vol. 30, no. 14, pp. 1728-1754, 2011.

[8] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based
SLAM with Rao-Blackwellized particle filters by adaptive proposals
and selective resampling,” in Robotics and Automation, 2005. ICRA
2005. Proceedings of the 2005 IEEE International Conference on.
IEEE, 2005, pp. 2432-2437.

[9]1 G. D. Tipaldi, M. Braun, and K. O. Arras, “FLIRT: Interest regions for
2D range data with applications to robot navigation,” in Experimental
Robotics. Springer, 2014, pp. 695-710.

[10]

(11]

[12]

[13]

[14]

[15]

J. Strom and E. Olson, “Occupancy grid rasterization in large environ-
ments for teams of robots,” in Intelligent Robots and Systems (IROS),
2011 IEEE/RSJ International Conference on. 1EEE, 2011, pp. 4271—
4276.

R. Kiimmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g20: A general framework for graph optimization,” in Robotics and
Automation (ICRA), 2011 IEEE International Conference on. 1EEE,
2011, pp. 3607-3613.

L. Carlone, R. Aragues, J. A. Castellanos, and B. Bona, “A fast
and accurate approximation for planar pose graph optimization,” The
International Journal of Robotics Research, pp. 965-987, 2014.

M. Bosse and R. Zlot, “Map matching and data association for large-
scale two-dimensional laser scan-based SLAM,” The International
Journal of Robotics Research, vol. 27, no. 6, pp. 667-691, 2008.

S. Agarwal, K. Mierle, and Others, “Ceres solver,” http://ceres-solver.
org.

E. B. Olson, “Real-time correlative scan matching,” in Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 4387-4393.

[16]

(17]

(18]

[19]

[20]

[21]

P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard,
“Robust map optimization using dynamic covariance scaling,” in
Robotics and Automation (ICRA), 2013 IEEE International Conference
on. IEEE, 2013, pp. 62-69.

A. H. Land and A. G. Doig, “An automatic method of solving discrete
programming problems,” Econometrica, vol. 28, no. 3, pp. 497-520,
1960.

J. Clausen, “Branch and bound algorithms-principles and examples,”
Department of Computer Science, University of Copenhagen, pp. 1—
30, 1999.

A. Howard and N. Roy, “The robotics data set repository (Radish),”
2003. [Online]. Available: http://radish.sourceforge.net/

K. Konolige, J. Augenbraun, N. Donaldson, C. Fiebig, and P. Shah,
“A low-cost laser distance sensor,” in Robotics and Automation, 2008.
ICRA 2008. IEEE International Conference on. 1EEE, 2008, pp.
3002-3008.

R. Kiimmerle, B. Steder, C. Dornhege, M. Ruhnke, G. Grisetti,
C. Stachniss, and A. Kleiner, “On measuring the accuracy of SLAM
algorithms,” Autonomous Robots, vol. 27, no. 4, pp. 387-407, 2009.

