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ABSTRACT

We show useful formulas of the Kalman filter with uncorrelated noise elements in
measurement equations. These formulas show that the Kalman filtering estimtes at each
time can be computed by each independent (i.e. uncorrelated) measurement component
data recursively. Namely each measurement with each uncorrelated noise component is
used separately by one by one for computing Kalman filtering. Furthermore, we derive
the measurement update formula of summarize each measurement update estimate and
error covariance by using each measurement with each uncorrelated noise component.

1 Kalman filter - introduction

The Kalman filter [1]-[5], is the minimum mean square error (minimum error covariance)

filter based on the measurement Y* := {yg, 41, - -, y:} to estimate the state x; as follows:
T = Fuap+w, t=0,1,--- (State equation), z;:(nx 1), (1)

E[Xo] =Xo = j)A<0|—1, COV[XO] =Yg = Eo|—17 (2)

vy = Huxy+v, t=0,1,--- (Measurement equation), w:(mx1), (3)

where w; and v; are mutually independent Gaussian white noises such as

Efw,] = 0, Elww,]=Qid-, (4)
Elv;] = 0, E[yv,]= Ri;_,. (where §, is the Kronecker’s § — function).  (5)

It is well known the minimum error variance estimate of x; based on the measurement Y
is:

sgmin[ e~ alP V) = Bfs | v = a0

Namely the minimum variance estimate is the conditional expectation of x; by given
measurements Y* := {yo,y1,---,%}. The conditional expectation of x;; &, and the
conditional error covariance; ¥, are given [4], [5] by
By = (S + RS UH) TS B + HE R ) (6)
Sef = (Eatlfl +HR™UH,)™ (7)



Then by applying the matrix inversion lemmas, we have well known recursive equations:

Ty = Typ—r + Ke(ye — HiZye—1), (8)
Ky =Sy H (H:Sy-1H + Ry)™",  (: Kalman Gain) (9)

T = Fioy, (10)
Yge = Y1 — KeHp Yy, (11)
Y = EzﬂtFtT + Q. (12)

2 Uncorrelated noise elements in measurement egs.

Here we consider the special case of the measurement equations as follows:
Y1t Hy, U1t
= T = S C = Hyxg o
o [ Yot 1 l Hy, ] ' [ Uzt 1 e

Namely, we assume that v1 ; and v are mutually uncorrelated (independent) white Gaus-
sian noises with zero means. Namely

E[vis] =0, Efvas] =0, (13)

e[ ]l 2 b= M0 5] )

where d, is Kronecker’s delta function. Then we will prove that the following Theorem.

Theorem 1 Let 'Z%t|t = E[$t|yt], i’tlt_l = E["Et|yt71], jjt‘t—l,l = E[l‘t|yt71, th]
and Zt\t = COV[$t|Yt], Et|t71 = COV[SBt|Yt71], Zt\tfl,l = COV[ZL’t|Yt71, th],,
then

JAjltlt = (Zﬂtlfm + H;tRngHQ,t)iwzatlﬁl,l jltlt—Ll + HgtRigyz,t>
= Ty—11 + Zt\tfl,ng:t(HQ,tZﬂtfl,lH;I:t + RQ,t)_l(y2,t — HyyZy—1,1), (15)
Et|t = [Zatl—l,l + Her:tRQ_}HQ,t}_I
= Mg-11— Eatl,l,lHz,t(Hz,tEﬂt—mHgT,t + Ritl)Hz,t (16)
where
Ty—10 = Typ—1 + Et|t71Hr11:t(H1,tEt|t71Hr11:t + Rl,t)_l(yl,t — Hy 1 Zy—1) (17)
Zt|t—1,1 = Et|t—1 — EitlflHl,t(Hl,tzt\t—l,lHEt + lez%)HLt‘ (18)

Proof 1 Let us evaluate the following conditional expectation:
E[$t|Yt_1ayl,t] = @t\tq,l-
From (6) and (7), we have

Bipo1n = (Sypy + HL RV H ) T (S e + H Ry ya) (19)



and

Yift—11 = (2,

-1 T HE Ry Hy )™ = Covia Y gy

Furthemore, we can evaluate the following conditional expectation:
iﬂt = E[$t|Yt717?/1,t,y2,t] = E[$t|Yt]7

as

Ayl T p-1 —1/y—1 A T p-1
Tt = (Et\t—m + H2,tR2,t HQ,t) (Et|t—1,1 Teje-1,1 + HQ,tRz,t y2,t)

Zt‘t = [Et_|t1—1,1 + HrQI;tRQ_’;HQ,t]_l

Finally, from (21) with (19), (20), (22), we have
it\t = (Zt_|t1—1,1 + H2T,tR2_,t1H2,t)_1 [Et_ﬁl—l,l jtltfl,l + H2T,tR2_,;y2,t}
= (3, + H Ry Hi,+ Hy Ry Hy )™
X [(Sy + HE R Hy ) (S, + HE Ry fHy) ™!
X (L)1 Tyfe—1 + HEtRf}yu) + H;I,‘tRitlyZ,t}
= (S + H Ry fHyy + Hy Ry f Hoy) ™!
X [Sades + HE Ry fyre + Hy Ry o]

T -1
_ (2—1 i Hy, Ry O Hy, )—1
te—1 H2,t O RQ,t H2,t
T -1
H R O
-1 5 1t 1t Y1t
X(2t|t71xt|t—1 + [ Ho, ] [ O R, ] [ Yo ] )
The above equation coincides to Eq. (6)

Corollary 1 Let o := E[z|Y"™ yo,] and Sy_19 := Cov|z|Y' ™ 12,4,
then

b =[S+ St - S
Teje = t[t—1,1 t[t—1,2 tlt—1
DINPI DIRP: DIRRINE
X\ 2gp—11Teft—1,10 7 2 o Ttfe-1,2 — 241 Lee—1
and
S o= [Sob sl oowet T
tt = tlt—1,1 tt—1,2 tlt—1
Proof 2 From (20), we have
ORI S SRS 5t I
tt—1,1 tt—1,2 tlt—1

= [Z-

\+FHU R H + 5y + Hy Ry Hay — E;h}_l -

t|t—

—1
[Zt_\tl—l + HlT,tRl_,%Hl,t + H;thl_}HZ,t}

= Dy

(20)

(21)

(22)

(24)

(25)



and also applying the relation in (19), we have
Typp—1q = (Et|t—1,1)(2tft1,1§7t|t_1 + HEtRf,tlth) (27)
Ty—12 = (Et|t71,2)(zt_|t1_1jt|t71 + HgtRthlyzt), (28)
therefore, we have the following relations:
[Zatl—l,lj\jﬂt*l:l + Zatl—mjtlt*ly? - Eﬁtl—lftltfl}
= [Zﬂtl,li't\t—l + HlT’tRi%yl’t + Eﬂtl,liﬂt—l + HzT,tRf,tlyz,t — Etftl,llffﬂt—d
[Eﬂtl_lft\t—l + HlT,tRiiyl,t + HQT,tRQ_,tlyzt-} (29)
From (28) and (29), the righthand side in (24) becomes
Syl + HY Ry Hy + HY Ry,

X {Eﬂtl—lftlt—l + HlT,tRl_,tlyl,t + HgtRQ_}yQ,t
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