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ABSTRACT
We show the novel extended Kalman filter with using the fixed-point smoother algor-

itym. The extended Kalman fitering algorithms are most popular for GNSS positioning.
So-called GR models and the corresponding positioning algorithms are closed connected
for the extended Kalman filters. In this paper, we show the novel extended Kalman
Kalman fiters with applying the linear fixed-point smoother algorithms.

1 The Extended Kalman Filter (EKF) - Introduction

The extended Kalman filter [1]-[3] are derived by applying the first order Taylor series
expansion for the following nonlinear state equation xk(: n × 1), and the measurement
yk(: m× 1) equation as follows:

xk+1 = fk(xk) + gk(xk)wk k = 0, 1, · · · (Nonlinear state equation) (1)

InitialConditions : E[x0] = x̂0 = x̂0|−1, Cov[x0] = Σ0 = Σ0|−1, (2)

yk = hk(xk) + vk k = 0, 1, · · · (Nonlinear measurement equation), (3)

where wk, and vk are mutually independent Gaussian white noise such as

E[wk] = 0, E[wkwτ ] = Qkδt−τ , (4)

E[vk] = 0, E[vkvτ ] = Rkδt−τ . (where δk is the Kronecker′s δ − function) (5)

It is well known the minimum error variance estimate of xk based on the measurement
Y k is:

argmin
x̂k

E
[
||xk − x̂k||2

∣∣∣Y k
]

= E
[
xk

∣∣∣ Y k
]
:= x̂k|k (6)

Namely the minimum variance estimate is the conditional expectation of xk based on the
given mesurements Y k. To obtain the conditional expectation E

[
xk

∣∣∣ Y k
]
by the Kalman

filtering formula.
First of all, we define the matrices as the partial derivatives:

FT
k :=

∂fk(x)

∂x

∣∣∣
x=x̂k|k

, HT
k :=

∂hk(x)

∂x

∣∣∣
x=x̂k|k−1

, (·)T : Transpose of (·), (7)

and the matrix:

Gk := gk(x̂k|k) (8)



Then the following first-order Taylor’s series approximations are applied for the nonlinear
functions as follows:

fk(xk) = fk(x̂k|k) + Fk[xk − x̂k|k] + · · ·
≈ Fkxk + fk(x̂k|k)− Fkx̂k|k

:= Fkxk + sk (9)

gk(xk) = [gk(x̂k|k) + · · ·
≈ Gk (10)

hk(xk) = hk(x̂k|k−1) +Hk[xk − x̂k|k−1] + · · ·
≈ Hkxk + hk(x̂k|k−1)−Hkx̂k|k−1

:= Hkxk + rk (11)

Therefore (1) and (3) are approximately described by

xt+1 ≈ Fkxk + sk +Gkwk (12)

E[x0] = x̂0 = x̂0|−1, Cov[x0] = Σ0 = Σ0|−1, (13)

yk ≈ Hkxk + rk + vk (14)

where

sk = fk(x̂k|k)− Fkx̂k|k (15)

rk = hk(x̂k|k−1)−Hkx̂k|k−1 (16)

(17)

Therefore the corresponding Kalman filters [4], [1], [5] are given by

x̂k+1|k = Fkx̂k|k + sk (18)

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1 − rk), k = 0, 1, . . . (19)

Kk = FkΣk|k−1H
T
k

[
HkΣk|k−1H

T
k +Rk

]−1
, ((Kalman Gain)) (20)

Σk+1|k = FkΣk|kF
T
k +GkQkG

T
k (21)

Σk|k = Σk|k−1 −KkHkΣk|k−1, k = 0, 1, . . . (22)

IC : x̂0|−1 = x̂0, Σ0|−1 = Σ0 (23)

2 EKF with the Fixed-Point Smoother (FPS)

Obviously, the accuracy of filtering estimates by applying the extended Kalman filter, is
depended on the accuracy of the initial estimates of x̂0 := x̂0|−1 and Σ0|−1 = Σ0, because
the Taylor expansion around; x̂0|0 for fk(x0), and x̂0|−1 for hk(x0) are applied. Thus, we try
to apply the fixed-point smoother(FPS) for getting more accurated initial estimates x̂0|L−1,
(L is a positive integer), instead of x̂0|−1. Namely, we combine the extended Kalman filter
for real-time (on line) computation for filtering, and each L-period we applying the fixed-
point smoother for providing more accurated initial estimates. The following fixed-point
smoother [1]-[3] are applied for E(xj|Y k), j ≤ k.

Recursive algorithms for fixed-point smoothers are given by the following steps ([2]):
(PS1), (PS2) and (PS3).



1. (PS1) Smoothing Estimates:

x̂j|k = x̂j|k−1 +KP,k(j)[yk −Hkx̂k|k−1 − rk], k = j, j + 1, · · · (24)

= x̂j|k−1 +KP,k(j)νk, νk := yk −Hkx̂k|k−1 − rk (25)

2. (PS2) Smoothing Gain:

KP,k(j) = Ωk|k−1H
T
k [HkΣk|k−1H

T
k +Rk]

−1 k = j, j + 1, · · · (26)

3. (PS3) Covariance matrix of Smoothing error:

Ωk+1|k = Ωk|k−1[I −KkHk]
TF T

k , k = j, j + 1, · · · (27)

Σj|k = Σj|k−1 − Ωk|k−1H
T
k [HkΣk|k−1H

T
k +Rk]

−1HkΩ
T
k|k−1 (28)

where the boundary condition is given by

Ωj|j−1 = Σj|j−1, (29)

and x̂k|k−1,Σk|k−1, Kk are given by the Kalman filters in (18), (21) and (20)

The following novel EKF with the fixed-point smoother are proposed:
Let q = 0 and k = qL, qL+ 1, · · · , (q + 1)L− 1, (L : positive integer),

1. (EKF and FPS) Let k = qL, · · · , (q + 1)L− 1
and obtain x̂k|k by EKF in (18)-(22)
and x̂qL|(q+1)L−1 by FPS in (24)-(28).
Then provide x̂k|k for k = qL, · · · , (q + 1)L− 1 to users.

2. (EKF and FPS with renewing IC) Obtain x̂k|k by EKF in (18)-(22)
for k = qL, · · · , (q + 2)L− 1,
with renewing IC: x̂qL|qL−1 := x̂qL|(q+1)L−1, ΣqL|qL−1; = ΣqL|(q+1)L−1.
Simultaneously, compute x̂(q+1)L|(q+2)L−1 by FPS in (24)-(28).
Provide x̂k|k for k = (q + 1)L, · · · , (q + 2)L− 1 to users.

3. (Let q = q + 1, Go to 1)
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