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Preface

Preface

This book is inspired by the welcome package that we offer to our doctoral
students when they start their activities in the research group. The original
package has been updated and compiled into two volumes which contain
a self-learning course and software tools aimed at providing the necessary
background to start work in an operative way in Global Navigation Satellite
System (GNSS). The design and contents are focused on the instrumental
use of the concepts and techniques involved in GNSS navigation and it is
intended to include all the elements needed to understand how the system
works and how to work with it. In this way, after working through the
two volumes, the students should be able to develop their own tools for
high-accuracy navigation, implementing the algorithms and expanding the
skills learned.

The first volume is devoted to the theory, providing a summary of the
GNSSs (GPS, Glonass, Galileo and Beidou) fundamentals and algorithms.
The second volume is devoted to laboratory exercises, with a wide range of
selected practical examples going further into the theoretical concepts and
their practical implementation. The exercises have been developed with a
specialised software package provided on a CD-ROM together with a set
of selected data files for the laboratory sessions. This is an end-to-end
GNSS course addressed to all those professionals and students who wish to
undertake a deeper study of satellite navigation, targeting the GNSS data
processing and analysis issues.

Starting from a review of the GNSS architecture, the contents of Volume
I range from the analysis of basic observables (code pseudorange and carrier
phase measurements) to setting up and solving the navigation equations for
Standard Point Positioning (SPP) and Precise Point Positioning (PPP). It
involves, in particular, an accurate modelling of GNSS measurements (up
to the centimetre level of accuracy or better) as well as the required mathe-
matical background to achieve the high-accuracy positioning goal. Param-
eter estimation techniques such as least squares and Kalman filtering are
explained from a conceptual point of view, looking towards implementation
at an algorithmic level.
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For this self-contained educational package, we have tried not only to
explain the theoretical concepts and provide the software tools, but also to
illustrate the results and give the methodology on GNSS data processing.
This is achieved in Volume II through guided examples developed in labora-
tory sessions using actual GNSS data files in standard formats. Moreover,
some additional practical information on public domain servers with GNSS
data products (precise orbits and clocks, ionospheric corrections, etc.) is
included, among other items.

Most of the algorithms introduced in the theory are implemented in
the GNSS-LABoratory (gLAB) tool suite. gLAB is an interactive and user-
friendly educational multipurpose software package for processing and
analysing GNSS data to centimetre-level positioning accuracy. The use
and functionalities of this tool are thoroughly explained and illustrated
through the different guided exercises in the laboratory sessions, together
with self-explanatory templates, tool tips and warning messages included
in the Graphical User Interface (GUI). gLAB has been developed under an
European Space Agency (ESA) Education Office contract.

The gLAB tool suite is complemented with an additional software pack-
age of simple routines implementing different algorithms described in the
theory.1 These elementary routines are included as examples of basic
implementations to help students build their own tools. As mentioned
above, the target is to provide effectiveness in instrumental use of the con-
cepts and techniques of GNSS data processing from scratch.

The didactic outline of this book is the result of more than 25 years of
university teaching experience. In a similar way, the scientific/technological
approach has been enhanced by our experience in developing different R&D
projects in the GNSS field.

1The gLAB source code is also provided as an example of the full implementation of
the algorithms in a self-contained tool with a wide range of capabilities.
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How to use this book

How to use this book

This volume contains the fundamentals and algorithms of the GNSS course
developed throughout this book. The practical aspects are given in
Volume II.

An intuitive approach to GNSS positioning is presented in the first chap-
ter as an introduction to GNSSs. The basic concepts and the geometrical
problem are introduced with a simple 2D positioning example. Then, the
results are extended to 3D positioning and determination of the time.

The second chapter presents an overview of the GNSSs (i.e. GPS,
Glonass, Galileo and Beidou). The GNSS segments are presented in par-
allel for the four systems emphasising their similarities and pointing out
their differences. The signals are explained in independent sections for
each system.

The third chapter is devoted to GNSS time reference, coordinate frames
and satellite orbits. Only a brief description of the main concepts is pre-
sented here, a more detailed explanation being left to Appendix A. Mini-
mum background information on satellite orbits is given to introduce com-
putation of the satellite coordinates. Detailed algorithms to compute GNSS
satellite coordinates from broadcast navigation data are given according
to the corresponding Interface Control Documents (ICDs). GPS, Galileo
or Beidou coordinates are computed from the pseudo-Keplerian elements.
Glonass coordinates are computed by integrating the orbit from the ini-
tial conditions of position and velocity using a fourth-order Runge–Kutta
method. The algorithms for computing coordinates from both almanac
data and precise orbit products are also given.

The fourth chapter deals with GNSS measurements and data prepro-
cessing. The code and carrier measurements are introduced and the dif-
ferent combinations of pairs of signals are presented. The interfrequency
code biases are introduced after redefining the clocks relative to the code
ionosphere-free combination. From these results, the equations describ-
ing the measurement content for the different combinations of signals are
arranged in a compact and suitable way. After discussing measurement
noise and multipath, the chapter concentrates on detection of the carrier
phase cycle slip. A broad discussion of this topic is presented and different
‘home-made’ algorithms are provided as examples of detectors for single-,
double- and triple-frequency signals.
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The fifth chapter provides the basis for modelling the GNSS measure-
ments. It presents equations and algorithms for an end-to-end model
description up to centimetre level or better, to achieve high-accuracy posi-
tioning capabilities. Remarks on the model components required for SPP
and those additional ones needed for PPP are given along with explana-
tions. As the model terms are common for the four systems (GPS, Glonass,
Galileo and Beidou), they are presented in general, although particular
specifications for these systems are given when needed. The algorithms
and equations are introduced with brief explanations of the physical bases
associated with a better understanding of the concepts involved. Differ-
ent plots of model component assessment with actual data are included to
illustrate the effects on the range and positioning domains.

The sixth chapter provides the mathematical background for solving the
positioning problem. Code-based positioning is used as the motivation for
introducing the linear observation model and the parameter adjustment
techniques. A brief review of least and weighted least squares and the min-
imum variance estimator is given to introduce the Kalman filter. Then
the concepts of formal, predicted (Dilution of Precision (DOP)) and mea-
sured accuracy are discussed. The second part of this chapter focuses on
high-accuracy positioning with code and carrier measurements. The linear
observation model is posed for PPP and the Kalman filter configuration
and associated parameters are discussed. The chapter ends with a section
on carrier phase ambiguity fixing for two- and three-frequency signals. The
main concepts and associated equations are given briefly together with a
discussion of the related problems. Most of the techniques outlined in this
section are used for differential positioning where the ambiguities are fixed
in double differences between satellites and receivers. Nevertheless, recent
approaches based on undifferenced ambiguity fixing are also discussed.

Six appendices are also included at the end of the book, complementing
the contents of Chapter 3 in Appendices A and B, Chapter 4 in Appendix C,
Chapter 5 in Appendix F and Chapter 6 in Appendices D and E. A list of
acronyms has also been compiled.

x



1. Introduction

1. Introduction

A GNSS involves a constellation of satellites orbiting Earth, continuously
transmitting signals that enable users to determine their three-dimensional
(3D) position with global coverage.

For many years, the only fully operational GNSS system was the US
Global Positioning System (GPS). The Russian GLObal NAvigation Satel-
lite System (Glonass) was restored to full operation in December 2011. The
Chinese BeiDou and European Galileo systems are currently under devel-
opment, although Beidou started an initial operating service (Phase II) in
late December 2011.

The positioning principle is based on solving an elemental geometric
problem, involving the distances (ranges) of a user to a set of at least
four GNSS satellites with known coordinates. These ranges and satellite
coordinates are determined by the user’s receiver using signals and naviga-
tion data transmitted by the satellites; the resulting user coordinates can
be computed to an accuracy of several metres. However, centimetre-level
positioning can be achieved using more advanced techniques.

1.1 An Intuitive Approach to GNSS Positioning

The basic observable in a GNSS is the time required for a signal to travel
from the satellite (transmitter) to the receiver. This travel time, multi-
plied by the speed of light, provides a measure of the apparent distance
(pseudorange) between them.

The following example (inspired by [Kaplan, 1996]) summarises, for a
two-dimensional (2D) case, the basic ideas involved in GNSS positioning.

Suppose that a lighthouse is emitting acoustic signals at regular intervals
of 10 minutes and intense enough to be heard some kilometres away. Also
assume that a ship with a clock perfectly synchronised to the one in the
lighthouse is receiving these signals in a time that is not an exact multiple
of 10 minutes, for example 20 seconds later (t = n× 10m + 20s).

The 20 seconds will correspond to the propagation time of sound from
the lighthouse (transmitter) to the ship (receiver). The distance ρ between
them can be obtained by multiplying this value by the speed of sound,
v ' 340 m/s. That is, ρ = 20 s × 340 m/s = 6.8 km.

Obviously, with a single lighthouse it is only possible to determine a
single measure of distance. So, the ship could be at any point on a circle
of radius ρ, see Fig. 1.1.

With a second lighthouse, the ship’s position will be given by the inter-

1
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Figure 1.1: In 2D positioning,

with a single lighthouse there is a

circle of possible locations of the

ship. With two lighthouses, the

possible solutions are reduced to

two. In the figure one of them

can be ruled out because it falls

on an island.

F
2

F1

With a single lighthouse,
possible solutions lie on
a circle of radius

With two lighthouses
the possible solutions
are reduced to two

section of the two circles centred on the two lighthouses and by the radius
determined by their distances to the ship (measured using acoustic signals).
In this case, the ship could be situated at either of the two points of inter-
section shown in Fig. 1.1. A third lighthouse will resolve this ambiguity.
Nevertheless, a rough knowledge of the ship’s position may allow us to
proceed without the third lighthouse. For instance, in Fig. 1.1, one of the
solutions falls on an island.

1.1.1 A Deeper Analysis of 2D Pseudorange-Based
Positioning

So far, perfect synchronism between the lighthouse and ship clocks has
been assumed, but in fact this is very difficult to achieve. Note that a syn-
chronisation error between these clocks will produce an erroneous measure
of signal propagation time (because it is linked to such clocks) and, as a
consequence, an error in the range measurements.

Assume that the ship’s clock is biased by an offset dτ from the lighthouse
clocks (which are supposed to be fully synchronised). Then, the measured
ranges, R1 and R2, will be shifted by an amount dr = v dτ :

R1 = ρ1 + dr, R2 = ρ2 + dr (1.1)

That is, the radius of the circles in Fig. 1.1 will vary by an unknown amount
dr, see Fig. 1.2. Hereafter we will call Ri a pseudorange, because it contains
an unknown error dr.

At first glance, it might seem that the intersection of these circles (with
an undefined radius Ri) could reach any point on the plane (for an arbitrary
dτ value). However, they will only intersect on the branches of a hyperbola,
whose foci are located at the two lighthouses, see Fig. 1.2. Indeed, as the
clock offset cancels when differencing the pseudoranges, the possible ship

2
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F 1 F 2 

R1-R2= constant  
over the hyperbola  

R1 
R2 

Figure 1.2: An (unknown) offset

dτ in the ship’s clock produces a

shift in the measured ranges

(Ri = ρi + dr) (or

pseudoranges), varying the radius

of the circle. But as both

pseudoranges R1 and R2 have

been measured with the same

clock, this offset cancels the

difference of ranges

R1 − R2 = ρ1 − ρ2 = constant.

Therefore, the ship is located at

a branch of the hyperbola

R1 − R2 = constant.

locations must verify the following equation (which defines a hyperbola, see
Fig. 1.2):

R1 −R2 = ρ1 − ρ2 = constant (1.2)

A third lighthouse will reduce the uncertainty in the ship’s position to
just two possible solutions. Such solutions are given by the intersection of
two hyperbolas as illustrated in Fig. 1.3. Note that, after estimating the
ship’s coordinates, its clock offset can be found from equation (1.1).

To complete this analysis, Fig. 1.4 shows another geometric construction
(inspired by [Hofmann-Wellenhof et al., 2003]) where the solution is at the
centre of a circle with a radius equal to the clock offset dr = v dτ , and which
is tangent to the three circles of radii ρi and centred on the lighthouses.

F 1 F 2 

F 3 

The ship is located at the 
intersection of the two  

hyperbolas, whatever the 
ship’s clock offset. 

Figure 1.3: The 2D positioning

with an unknown user clock

offset.
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Figure 1.4: Geometrical view 2D

positioning, complementing

Fig. 1.3.
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Finally, and in order to simplify the explanation, consider again the sit-
uation in Fig. 1.1 where the ship and lighthouse clocks are assumed fully
synchronised. If the range measurements were perfect, a sailor could de-
termine his position as the intersection point of the two circles centred on
lighthouses F1 and F2. However, the measurements are not exact, and have
some measurement error ε. Figures 1.5 and 1.6 illustrate how this measure-
ment error is translated to the coordinate estimate as an uncertainty region,
which depends on the geometry defined by the relative positions of the ship
and lighthouses.

1.1.2 Translation to 3D GNSS Positioning

Although the above example corresponds to a 2D case, the basic principle
is the same in GNSS:

• Satellites (as the lighthouses): In the case of the lighthouses, one
assumes that their coordinates are known. In the case of the GNSS
satellites, the coordinates are calculated from the navigation data
(ephemeris) transmitted by the satellites, see Chapters 2 and 3.

• Pseudorange measurements: In GNSS positioning, as in the exam-
ple, the distances between the receiver and satellites are measured
from the travel time of a signal (in GNSS, an electromagnetic wave)
from the satellite to the receiver, see Chapters 2 and 4.

Other comments are as follows:

• Clock synchronisation: The satellite clocks are among the most
critical components of a GNSS. In order to ensure the stability of such
clocks, GNSS satellites are equipped with atomic oscillators with high
daily stabilities ∆f/f ' 10−13 to 10−14. However, despite this high
stability, satellite clocks accumulate some offsets over time. These
satellite clock offsets are continuously estimated by the ground seg-
ment and transmitted to users to correct the measurements1 (see

1Perfect synchronism was assumed between the lighthouse clocks in the previous ex-
ample.
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Chapter 4). The receivers, on the other hand, are equipped with
quartz-based clocks, which are much more cheaper but with a poorer
stability (about 10−9). This inconvenience is overcome by estimat-
ing the clock offset together with the receiver coordinates, as in the
previous example.

• From 2D to 3D positioning: It is not difficult to extend the pre-
vious 2D geometric construction to the 3D case of GNSS positioning,
and to show that at least four satellites are needed to compute the
three receiver coordinates and clock. In this case, the previous circles
and hyperbolas are generalised to spheres and hyperboloids, which
intersect in two possible ways. For a ground receiver, one of the
solutions is on Earth’s surface and the other far away in space. An
algebraic method to compute these two solutions (Bancroft’s method)
is provided in Appendix D. Nevertheless, the usual way to solve this
nonlinear problem is to linearise the equations for an approximate
user position and solve them iteratively (see Chapter 6).

• Dilution Of Precision: The geometry of the satellites (i.e. how the
user sees them) affects the positioning error. This is illustrated in
Fig. 1.6, where the size and shape of the region change depending
on their relative positions. This effect is called Dilution Of Precision
(DOP) and is treated in section 6.1.3.2.

F 1 

F 2 

True range 

Apparent  range due to 
measurement errors 

Uncertainty region in 
the position estimate 

ε ε 

Figure 1.5: The measurement

noise ε is translated to the

position estimate as an

uncertainty region.

Figure 1.6: The DOP effect in

positioning: 2D illustration of

the variation of the uncertainty

region with geometry.

5





2. GNSS Architecture

2. GNSS Architecture

Global Navigation Satellite System (GNSS) is a generic term denoting a
satellite navigation system (e.g. GPS, Glonass, Galileo and Beidou) that
provides continuous positioning over the globe.1

A GNSS basically consists of three main segments: the space segment,
which comprises the satellites; the control segment (also referred to as the
ground segment), which is responsible for the proper operation of the sys-
tem; and the user segment, which includes the GNSS receivers providing
positioning, velocity and precise timing to users (see Fig. 2.1).

2.1 GNSS Segments

2.1.1 Space Segment

The main functions of the space segment are to generate and transmit code
and carrier phase signals, and to store and broadcast the navigation message
uploaded by the control segment. These transmissions are controlled by
highly stable atomic clocks onboard the satellites.

The GNSS space segments are formed by satellite constellations with
enough satellites to ensure that users will have at least four satellites in
view simultaneously from any point on Earth’s surface at any time.

2.1.1.1 Satellite Constellations

The GPS satellites are arranged in six equally spaced orbital planes sur-
rounding Earth, each with four ‘slots’ occupied by baseline satellites. This
24-slot arrangement ensures there are at least four satellites in view from
virtually any point on the planet.2 The satellites are placed in a Medium
Earth Orbit (MEO) orbit, at an altitude of 20 200 km and an inclination of
55◦ relative to the equator. Orbits are nearly circular, with an eccentric-
ity of less than 0.02, a semi-major axis of 26 560 km and a nominal period
of 11 hours, 58 minutes and 2 seconds (12 sidereal3 hours), repeating the
geometry each sidereal day.

1This chapter was written in collaboration with Carlos López de Echazarreta Mart́ın,
from ESA/ESAC Communication & Education Office.

2The US Air Force normally flies more than 24 GPS satellites to maintain coverage
whenever the baseline satellites are being serviced or decommissioned. The extra satellites
may increase GPS performance but are not considered part of the core constellation (see
http://www.gps.gov/systems/gps/space/ and http://www.navcen.uscg.gov for the status
of the GPS constellation).

3See section A.1.1.2 in Appendix A.
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Figure 2.1: GNSS architecture.
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The nominal Glonass constellation consists of 24 MEO satellites de-
ployed in three orbital planes with eight satellites equally spaced in each
plane. The orbits are roughly circular, with an inclination of about 64.8◦,
and at an altitude of 19 100 km with a nominal period of 11 hours, 15 min-
utes and 44 seconds, repeating the geometry every eight sidereal days.4

Due to funding problems, the number of satellites decreased from the 24
available in 1996 to only 6 in 2001. In August 2001, the Russian gov-
ernment committed to recover the constellation and to modernise the sys-
tem, approving new funding. A total of 24 operational satellites plus 2
in maintenance were again available in December 2011, restoring the full
constellation.5

The planned Galileo constellation in Full Operational Capability (FOC)
phase consists of 27 operational and 3 spare MEO satellites at an altitude of
23 222 km and with an orbit eccentricity of 0.002. Ten satellites will occupy
each of three orbital planes inclined at an angle of 56◦ with respect to the
equator. The satellites will be spread around each plane and will take about
14 hours, 4 minutes and 45 seconds to orbit Earth, repeating the geometry
each 17 revolutions, which involves 10 sidereal days. This constellation
guarantees, under nominal operation, a minimum of six satellites in view
from any point on Earth’s surface at any time, with an elevation above the
horizon of more than 10◦.

Comment: The Galileo Deployment Plan has two main phases:
(1) the In-Orbit Validation (IOV) phase with a reduced constellation of
four operational satellites and their related ground infrastructure (2012);
and (2) the FOC that involves the deployment of the remaining ground
and space infrastructure, including an intermediate initial operational ca-
pability phase (by 2014–2016) with 18 satellites in operation (the 4 IOV
satellites plus 14 others). Completion of the FOC phase is expected by
2019–2020.

4However, as each orbital plane contains eight satellites, a satellite will pass the same
place every sidereal day.

5See http://www.glonass-center.ru/en/ for the status of the Glonass constellation.
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Figure 2.2: GNSS satellites:

GPS IIR-M (top left), Glonass-M

(top right), Galileo IOV (bottom
left) and Beidou-M (bottom
right).

The Beidou (Compass)6 constellation (Phase III)7 will consist of 35 satel-
lites, including 5 Geostationary Orbit (GEO) satellites and 30 non-GEO
satellites in a nearly circular orbit. The non-GEO satellites include 3 In-
clined Geosynchronous Satellite Orbit (IGSO) ones, with an inclination of
about 55◦, and 27 MEO satellites orbiting at an altitude of 21 528 km in
three orbital planes with an inclination of about 55◦ and with an orbital
period of about 12 hours and 53 minutes, repeating the ground track every
seven sidereal days. The GEO satellites, orbiting at an altitude of about
35 786 km, are positioned at 58.75◦E, 80◦E, 110.5◦E, 140◦E and 160◦E, re-
spectively, and are expected to provide global navigation service by 2020.
The previous Phase II involves a reduced constellation of four MEO, five
GEO and five IGSO satellites to provide regional coverage of China and
surrounding areas. The initial Phase II operating service with 10 satellites
started on 27 December 2011.

2.1.1.2 The Satellites

Satellites have various structures and mechanisms to keep them in orbit,
communicate with the control segment and broadcast signals to receivers.
The satellite clocks are one of the critical components of GNSSs. For this
reason, satellites are equipped with very high-stability atomic clocks (rubi-
dium, caesium, hydrogen).

A specific description of satellites for the GPS, Glonass, Galileo and
Beidou systems is presented below (see also Fig. 2.2).8

6BeiDou is the Chinese translation of ‘Big Dipper’ and also means ‘Compass’ in a
metaphoric sense.

7The first step taken by China in building a satellite navigation system under its own
control was the regional system BeiDou-1, which became operational in May 2003. But
BeiDou-2/3, i.e. Phase II or III (also known as Compass), is not an extension of BeiDou-
1, whose location measurement scheme requires two-way transmissions between a user
and the central control station via the satellite. It is a new GNSS like GPS, Glonass or
Galileo. Nevertheless, backward compatibility with BeiDou-1 is assured by the inclusion
of five GEO satellites.

8Satellite pictures courtesy of US Air Force http://www.af.mil (GPS), JSC ‘Informa-
tion Satellite System Reshetnev Company’ http://www.iss-reshetnev.com (Glonass) and
ESA http://www.esa.int (Galileo). Beidou-M is from [Cao et al., 2008].
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2.1.1.2.1 GPS Satellites

GPS satellites are divided into blocks. Each block comprises a set of satel-
lites usually launched within a certain time interval. A brief description of
the different blocks follows.9

Block I, Navigation Development Satellites. Eleven satellites of this kind
were launched between 1978 and 1985. The Selective Availability (S/A)
capability10 was not yet implemented then. They weighed about 845 kg
and had a planned average lifetime of 4.5 years, although some of them
lasted for 10 years. They were capable of providing positioning services for
3 or 4 days without any contact with the control centre.

Blocks II and IIA, Operational Satellites. These consist of 28 satellites in
total, launched from 1989 on, and many still operating. They weigh about
1 500 kg each and have a planned average lifetime of 7.5 years. Since 1990,
an improved version has been used, namely Block IIA (advanced), with the
capability of mutual communication. They are able to supply positioning
services for 180 days without contact with the control segment. However,
under normal operating mode, they must communicate daily.

Block IIR, Replacement Operational Satellites. These satellites were pro-
duced to replace the II/IIA series as they gradually degraded or exceeded
their intended design lifetime. The ‘R’ in Block IIR stands for replenish-
ment. They weigh about 2 000 kg each and have a planned average lifespan
of 10 years. These satellites are capable of autonomously determining their
orbits and generating their own navigation messages. They are able to
measure the distances between them and to transmit observations to other
satellites or to the control segment. A satellite of this category, when
completely developed, must be capable of operating for about half a year
without any support from the control segment and with no degradation in
ephemeris accuracy.

Block IIR-M, Modernised Satellites. The IIR-M series of satellites are
upgraded versions of the IIR series, completing the backbone of the GPS
constellation. They include a new military signal and the more robust civil
signal L2C. The first Block IIR-M satellite was launched on 26 September
2005.

Block IIF, Follow-on Operational Satellites. The first satellite (SVN62)
was launched on 28 May 2010.11 The IIF series expand on the capabilities of
the IIR-M series with the addition of a third civil signal (L5) in a frequency
band protected for safety-of-life applications. Their theoretical average
lifetime is about 15 years, and they have inertial navigation systems.

Block III Satellites. These satellites will introduce significant enhance-
ments in navigation capabilities, by improving interoperability and jam
resistance. They will provide the fourth civil signal on the L1 band (L1C).

9More information can be found at http://tycho.usno.navy.mil/gps.html .
10S/A is an intentional degradation of public GPS signals implemented for US national

security reasons. S/A was switched off in May 2000 and permanently removed in 2008.
11See http://gge.unb.ca/Resources/GPSConstellationStatus.txt .
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GPS satellites are identified in different ways: by their position in the or-
bital plane,12 their NASA reference number, their assigned Pseudo-Random
Noise (PRN) code, their Space Vehicle Number (SVN), etc.

Full Operational Capability (FOC):
The GPS constellation achieved FOC in March 1994, when 24 Block II/IIA
satellites were operational in their assigned orbits. Nevertheless, FOC was
not declared until 17 July 1995 [Hofmann-Wellenhof et al., 2008].

2.1.1.2.2 Glonass Satellites

The following generations of satellites have been developed.13

Prototypes (Generation Zero). The first prototypes of the Glonass (Ura-
gan) satellites were placed into orbit in October 1982, with 18 launched
between 1982 and 1985. These prototype satellites are referred to as Block
I vehicles.

First Generation. The first true Glonass satellites were launched be-
tween 1985 and 1990. They are divided into different block vehicles (Block
IIa, IIb and IIv), with different design lifetimes between the blocks. These
lifetimes ranged from the two-year design of Block IIb to the three-year
design of Block IIv, although many spacecraft exceeded this (up to 4.5
years). These satellites are all three-axis stabilised with a mass of about
1 250 kg, and are equipped with a basic propulsion system to allow relo-
cation within the constellation. They have improved time and frequency
standards compared with the previous prototypes, and increased frequency
stability.

Second Generation. Glonass-M (or Uragan-M) is the second genera-
tion of satellites, where the ‘-M’ indicates modernised or modified. They
were developed from 1990 on, with the first one sent into orbit in 2001.14

Glonass-M satellites have a longer design lifetime of seven years as a
result of improvements to the propulsion system and clock stability (cae-
sium clocks). This is a large increase in lifetime compared with the 2–3
years of previous first-generation spacecraft, but it is still below the 10-
year mean lifetime of the NAVSTAR-GPS.

These satellites have a mass of about 1 480 kg. They are 2.4 m in diam-
eter and 3.7 high, with dual solar arrays of 7.2 m. They also carry corner-
cube laser reflectors for precise orbit determination and geodetic research.
A remarkable feature of these satellites is the addition of a second civil
signal on the G2 band, which allows civil users to cancel out ionospheric
refraction.

Third Generation. These satellites are known as the Glonass-K (or
Uragan-K) spacecraft. They have an increased lifetime design of 10–12
years and a reduced weight of only 750 kg (allowing their launch in pairs
from the Plesetsk Cosmodrome on Soyuz-2-1a rockets). As with the previ-
ous generation of satellites, they are three-axis stabilised and nadir point-
ing with dual solar arrays. They provide the new Code Division Multiple

12Every satellite has a place number (1, 2, 3, etc.) within each of the six orbital planes
– A, B, C, D, E or F.

13For the status of the Glonass constellation see http://www.glonass-ianc.rsa.ru.
14See http://gge.unb.ca/Resources/GLONASSConstellationStatus.txt .
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Access (CDMA) signal for civilian applications on the new G3 band, among
the civil signals in the G1 and G2 bands using the Frequency Division Mul-
tiple Access (FDMA) technique (see section 2.2), and also include a Search
and Rescue (SAR) payload. The first Glonass-K satellite was launched on
26 February 2011.

Full Operational Capability (FOC). The Glonass constellation reached
FOC on 8 December 2011, after the satellite launched on 4 November (into
Slot 3) was declared operational at 11:42 Moscow Time. With 24 operating
satellites, the Glonass constellation provides complete coverage of Earth’s
surface.

2.1.1.2.3 Galileo Satellites

Galileo Satellites Experimental Phase

Two experimental satellites were launched between 2005 and 2008: the
Galileo In-Orbit Validation (GIOVE) satellites GIOVE-A and GIOVE-B.
Their mission served several purposes:15 to secure and maintain the Galileo
frequency filling with the International Telecommunications Union (ITU);
to validate technologies to be used in the Galileo operational constellation;
to monitor the environment at MEO; and to generate Galileo signals so
that user equipment can be developed.

Both satellites were built in parallel to provide in-orbit redundancy and
secure the mission objectives, and both provide complementary capabilities.

GIOVE-A was built by Surrey Satellite Technology Ltd. (SSTL) and
was successfully launched on 28 December 2005. It has a mass of about
600 kg and two redundant small-size rubidium atomic clocks onboard, with
a stability of 10 ns per day. Its nominal lifetime of 27 months was extended
in order to maintain continuity of Galileo’s in-orbit validation prior to the
launch of GIOVE-B and beyond.

GIOVE-B was built by Astrium and Thales Alenia Space, and was suc-
cessfully launched on 27 April 2008. Its mass and estimated lifetime are
similar to those of GIOVE-A, but it has a more advanced payload. There
are four redundant clocks onboard, two small rubidium atomic clocks, with
a stability of 10 ns per day, and two passive hydrogen maser clocks, which
are a different type of atomic clock with a higher stability (1 ns per day).

Galileo IOV Phase

This phase is aimed at qualifying the Galileo space, ground and user seg-
ments through extensive in-orbit/on-ground tests and operations of a core
spacecraft constellation and of the associated ground segment. During this
phase, four operational satellites complement the two experimental satel-
lites (GIOVE-A and GIOVE-B) already in orbit.

The first two operational Galileo satellites were launched on 21 October
2011 by a Soyuz rocket, and placed in the first orbital plane. The next two

15More information is available at http://www.esa.int/Our Activities/Navigation/GIOVE-
A navigation signal available to users.
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satellites were launched on 12 October 2012 and placed in the second or-
bital plane. They are fully representative of the others that will follow them
into orbit. Each satellite has a mass of about 700 kg and combines two ru-
bidium and two passive hydrogen maser clocks with a powerful transmitter
to broadcast precise navigation data.

Galileo FOC Phase

By 2014-2016, the constellation is expected to have grown to 18 satellites,
including the 4 satellites from the IOV phase, and it is hoped that FOC will
be reached by 2019-2020, with a constellation of 27 operational satellites,
plus 3 spares.

2.1.1.2.4 Beidou Satellites

There are three variants of Beidou satellites: the geostationary Beidou-G,
the geosynchronous Beidou-IGSO and the MEO Beidou-M. They have a de-
sign lifetime of eight years and are based on the three-axis-stabilised DFH-3
(DongFangHong) platform,16 built by CASC (China Aerospace Science and
Technology Corporation).

The first Beidou Phase II satellite in orbit was the experimental Beidou-
M satellite, launched on 14 April 2007 (local time) to test the onboard
payload. This satellite represented the first step in the new Chinese GNSS.
By late December 2011 China had put four Beidou-G and five Beidou-IGSO
satellites into orbit.

On 27 December 2011, with 10 orbiting satellites, the Beidou system
formally started to provide an initial Phase II operating service to China
and its surrounding areas (regional service). By the end of 2012, there are
five GEO, four MEO and five IGSO navigation satellites in orbit. Com-
pletion of the 35-satellite constellation (5 GEO, 27 MEO and 3 IGSO) is
scheduled for 2020 (Phase III, global service) [BeiDou-SIS-ICD, 2012].

2.1.2 Control Segment

The control segment (also referred to as the ground segment) is responsible
for the proper operation of the GNSS. Its basic functions are:

• to control and maintain the status and configuration of the satellite
constellation;

• to predict ephemeris and satellite clock evolution;

• to keep the corresponding GNSS time scale (through atomic clocks);
and

• to update the navigation messages for all the satellites.

16See http://space.skyrocket.de/doc sdat/dfh-3.htm.

13

http://space.skyrocket.de/doc_sdat/dfh-3.htm


TM-23/1

2.1.2.1 GPS Control Segment

The GPS control segment is composed of a network of Monitoring Stations
(MS), a Master Control Station (MCS) and the Ground Antennas (GA)
[ICD-GPS-200]. See the layout in Fig. 2.1.

The Master Control Station, located in Colorado Springs, USA, is the
core of the control segment. It is responsible for operating the system
and providing command, control and maintenance services to the space
segment. A new, fully functional backup station, known as the Alternate
Master Control Station (AMCS), was set up as part of a modernisation
plan17 at Vandenberg Air Force Base, see Fig. 2.3.

The Monitoring Stations are distributed around the world, see Fig. 2.3.
They are equipped with atomic clock standards and GPS receivers to collect
GPS data continuously for all the satellites in view from their locations.
The collected data are sent to the Master Control Station where they are
processed to estimate satellite orbits (ephemerides) and clock errors, among
other parameters, and to generate the navigation message.

Prior to the modernisation programme, the MS network comprised five
sites from the United States Air Force (USAF), located in Hawaii, Col-
orado Springs (Colorado), Ascension Island (South Atlantic), Diego Garcia
(Indian Ocean) and Kwajalein (North Pacific). Cape Canaveral (Florida)
was incorporated in 2001, also from the USAF.

In 2005, the modernisation programme expanded this network to include
six MS operated by the National Geospatial-Intelligence Agency (NGA)
of the US Department of Defense (DoD): Adelaide (Australia), Buenos
Aires (Argentina), Hermitage (UK), Manama (Bahrain), Quito (Ecuador)
and Washington, DC (USA). Five more stations were added afterwards in
2006: Fairbanks (Alaska), Osan (South Korea), Papeete (Tahiti), Pretoria
(South Africa) and Wellington (New Zealand). With this configuration,
each satellite is seen from at least three MS, which allows more precise
orbits and ephemeris data to be computed, therefore improving system
accuracy.

The Ground Antennas uplink data to the satellites via S-band radio
signals. These data include ephemerides and clock correction information
transmitted within the navigation message, as well as command telemetry
from the MCS. Every satellite can be ‘uploaded’ three times per day, that
is every eight hours; nevertheless, it is usually updated just once a day. The
GA are collocated in four of the MS (Ascension Island, Cape Canaveral,
Diego Garcia and Kwajalein).

17See http://www.gps.gov/systems/gps/control/ for further information on the GPS
Control Segment Modernisation programme.
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2.1.2.2 Glonass Control Segment

As in GPS, the Glonass control segment (or Ground-based Control Fa-
cilities) monitors the status of satellites, determines the ephemerides and
satellite clock offsets with respect to Glonass time and Coordinated Uni-
versal Time (UTC), and, twice a day, uploads the navigation data to the
satellites.

The Glonass control segment [GLONASS ICD, 2008] comprises the Sys-
tem Control Centre (SCC), located in Krasnoznamensk (Moscow region),
the Network of Command and Tracking Stations, entirely located within
former Soviet Union territory, and the Central Synchroniser (CC-M) – the
system clock – in Schelkovo (Moscow region).

The SCC coordinates all functions and operations at the system level.
It processes information from the command and tracking stations to de-
termine the satellite clock and orbit states, and it updates the navigation
message for each satellite.

The command and tracking stations comprise a main network of five
Telemetry, Tracking and Control (TT&C) stations distributed throughout
the Russian territory (in St Petersburg, Schelkovo, Yenisseisk, Komsomolsk
and Ussuriysk), some of them equipped with laser ranging (Laser Station
(LS)) and other monitoring facilities (MS), see Fig. 2.4. This network is
complemented in the modernisation plan by additional MS in the former
Soviet Union territory (Zelenchuck, Nurek, Ulan-Ude and Yakutsk).

The Central Synchroniser is responsible for the Glonass time scale. It
is connected with the ‘phase control system’ that monitors satellite clock
time and phase signals.
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Figure 2.4: Glonass ground
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2.1.2.3 Galileo Ground Segment

The Galileo ground segment controls the entire satellite constellation, the
navigation system facilities and the dissemination services. The FOC in-
volves two Ground Control Centre (GCC), five Telemetry, Tracking and
Control (TT&C) stations, nine Mission Uplink Stations (ULS) and a world-
wide network of Galileo Sensor Stations (GSS), see Fig. 2.5.

The Ground Control Segment (GCS) is responsible for the constella-
tion control and management of Galileo satellites. It provides the TT&C
function for the whole satellite constellation. Its functional elements are
deployed within the GCCs and the globally distributed TT&C stations.18

The TT&C stations use S-band frequency antennas 13 m in diameter to
provide a secure exchange of data between the control centres and satel-
lites.

The Ground Mission Segment (GMS) is responsible for the determina-
tion and uplink of the navigation and integrity data messages19 needed to
provide the navigation and UTC time transfer service. The GMS includes
a worldwide network of GSS, continuously collecting data to be processed
by GCC for determining Galileo navigation and integrity data messages.
Each of the GSS is equipped with three parallel reception channels: one
channel for the determination of orbit data and clock synchronisation, a
second channel for integrity determination, and a third redundant channel.
The global geographical distribution of such stations has been selected to
ensure permanent access to any satellite of the constellation at any time.

Navigation and integrity data are uplinked from the GCC to the satel-
lites by nine ULS. These stations are equipped with C-band parabolic an-
tennas about 3 m in diameter. The uplinks are designed to ensure the

18That is, the majority of the functions are contained within the operator-controlled
GCC, with only the autonomous TT&C functions located at remote sites.

19To warn users whether the transmitted signals can be trusted, and to receive timely
alert messages in case of failures.
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Figure 2.5: Galileo ground

segment layout.

provision of navigation and integrity information worldwide for all users,
even in the case of a potential failure due to the loss of a single antenna.

A hybrid communication network interconnects the remote stations
(ULS, GSS and TT&C stations) with the GCC by different means of stan-
dard and special radio, wired data and voice communication links, ensuring
communication between all the sites.

The two GCC constitute the core of the ground segment. There are
two redundant elements located in Fucino (Italy) and Oberpfaffenhofen
(Germany). Some of their main functions are:

• orbit determination and synchronisation;

• control of all Galileo satellites and uploading navigation data mes-
sages;

• monitoring and control, performance monitoring, performance predic-
tion and maintenance management functions of the ground segment
elements;

• monitoring and control of all ground segment elements in real time;

• generation of navigation messages; and

• computation of Galileo System Time (GST) and provision of a reliable
and stable coordinated time reference for the Galileo system.

2.1.2.4 Beidou Control Segment

There is little information on the Beidou ground segment at the time of
writing. It is basically composed of 1 MCS, 2 ULS and 30 MS.
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2.1.3 User Segment

The user segment is composed of GNSS receivers. Their main function is
to receive GNSS signals, determine pseudoranges (and other observables)
and solve the navigation equations in order to obtain the coordinates and
provide a very accurate time.

The basic elements of a generic GNSS receiver are: an antenna with
preamplification, a radio frequency section, a microprocessor, an
intermediate-precision oscillator, a feeding source, some memory for data
storage and an interface with the user. The calculated position is referred
to the antenna phase centre. For more details see [Fantino et al., 2011].

2.2 GNSS Signals

GNSS satellites continuously transmit navigation signals at two or more
frequencies in L band. These signals contain ranging codes and navigation
data to allow users to compute both the travel time from the satellite to
the receiver and the satellite coordinates at any epoch. The main signal
components are described as follows:

Carrier: Radio frequency sinusoidal signal at a given frequency.

Ranging code: Sequences of zeros and ones which allow the receiver to
determine the travel time of the radio signal from the satellite to the
receiver. They are called PRN sequences or PRN codes.

Navigation data: A binary-coded message providing information on the
satellite ephemeris (pseudo-Keplerian elements or satellite position
and velocity), clock bias parameters, almanac (with a reduced-accura-
cy ephemeris data set), satellite health status and other complemen-
tary information.

Frequency Allocation

The allocation of frequency bands is a complex process because multiple
services and users can fall within the same range. That is, the same fre-
quencies can be allocated for different purposes in different countries. The
ITU is a United Nations agency coordinating the shared global use of the
radio spectrum. It involves, for instance, television, radio, cell (mobile)
phone, radar satellite broadcasting, etc., and even microwave ovens. The
ITU divides the electromagnetic spectrum into frequency bands, with dif-
ferent radio services assigned to particular bands.

Figure 2.6 shows the frequency bands for the Radionavigation Satellite
Service (RNSS). There are two bands in the region allocated to the Aero-
nautical Radio Navigation Service (ARNS) on a primary basis worldwide.
These bands are especially suitable for Safety-of-Life (SoL) applications
because no other user of this band is allowed to interfere with the GNSS
signals. These correspond to the upper L band (1 559–1 610 MHz), contain-
ing the GPS L1, Galileo E1, Glonass G1 and Beidou B1 bands, and to the
bottom of the lower L band (1 151–1 214 MHz) where the GPS L5, Glonass
G3, Galileo E5 and Beidou B2 bands are located.
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Figure 2.6: GPS, Glonass,

Galileo and Beidou navigational

frequency bands.

The remaining GPS L2, Glonass G2, Galileo E6 and Beidou B3 signals
are in the 1 215.6–1 350 MHz bands. These bands were allocated to radio
location services (ground radars) and RNSS on a primary basis, so the
signals in these bands are more vulnerable to interference than the previous
ones.

2.2.1 GPS Signals

Legacy GPS signals are transmitted on two radio frequencies in the L band,
referred to as Link 1 (L1) and Link 2 (L2),20 or L1 and L2 bands. They
are right-hand circularly polarised and their frequencies are derived from
a fundamental frequency f0 = 10.23 MHz, generated by onboard atomic
clocks.

L1 = 154× 10.23 MHz = 1 575.420 MHz

L2 = 120× 10.23 MHz = 1 227.600 MHz

Two services are available in the current GPS system:

SPS: The Standard Positioning Service is an open service, free of charge
for worldwide users. It is a single-frequency service in the frequency
band L1.

PPS: The Precise Positioning Service is restricted by cryptographic tech-
niques to military and authorised users. Two navigation signals are
provided in two different frequency21 bands, L1 and L2.

The GPS uses the CDMA technique to send different signals on the same
radio frequency, and the modulation method used is Binary Phase Shift
Keying (BPSK) (for more details see [Enge and Misra, 1999] or
[Avila-Rodriguez, 2008]).

20They also transmit two additional signals at frequencies referred to as L3 (associated
with the Nuclear Detonations Detection System) and L4 (for other military purposes).

21Transmission at two frequencies allows dual-frequency user receivers to cancel out
ionospheric refraction, which is one of the main sources of error (see section 5.4.1.1).
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The following types of PRN codes and messages are modulated over the
two carriers (see Fig. 2.7):

• Coarse/Acquisition (C/A) code, also known as civilian code C(t):
This sequence contains 1 023 bits and is repeated every millisecond
(i.e. a chipping rate of 1.023 Mbps). Then, the duration of each C/A
code chip is 1µs, which means a chip width or wavelength of 293.1 m.
This code is modulated only on L1. The C/A code defines the SPS.

• Precision code, P (t): This is reserved for military use and authorised
civilian users. The sequence is repeated every 266 days (38 weeks)
and a weekly portion of this code is assigned to every satellite, called
the PRN sequence. Its chipping rate is 10 Mbps, which leads to a
wavelength of 29.31 m. It is modulated over both carriers L1 and L2.
This code defines the PPS.

• Navigation message, D(t): This is modulated over both carriers at
50 bps, reporting on ephemeris and satellite clock drifts, ionospheric
model coefficients and constellation status, among other information.

sL1(t) = aPPi(t)Di(t) sin(ω1t+ φL1) + aCCi(t)Di(t) cos(ω1t+ φL1)

sL2(t) = bPPi(t)Di(t) sin(ω2t+ φL2
)

The index i stands for the i-th satellite.

In order to restrict access of civilian users to full system accuracy, the
following protection was introduced:

• S/A or Selective Availability: This covers intentional satellite clock
degradation (process δ) and ephemeris manipulation (process ε). The
effect on horizontal positioning ranges from about 10 m (S/A off) to
100 m (S/A on) (2σ error). The process δ acts directly on the satellite
clock fundamental frequency, which has a direct impact on pseudor-
anges to be calculated by users’ receivers. The process ε consists of
truncating information related to orbits. US President Bill Clinton
ordered the cessation of GPS S/A on 2 May 2000. It was permanently
removed in 2008, and not included in the next generations of GPS
satellites.

• A/S or Anti-Spoofing: This consists of P code encryption by com-
bining it with a secret W code, resulting in the Y code, which is
modulated over the two carriers L1 and L2. The purpose is to pro-
tect military receivers against an adversary transmitting a faulty copy
of the GPS signal to mislead the receiver, and to deny access of non-
authorised users to the precise ranging code P at L1 and L2 frequen-
cies (as the only C/A code available on L1).

The signal structure is summarised in Fig. 2.7 and Table 2.1.22

22Note that Fig. 2.7 and Table 2.1 only show the legacy signals on the L1 and L2
bands.
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Figure 2.7: Legacy GPS signal

structure (source

[Seeber, 1993]).

Table 2.1: Legacy GPS signal structure (source [Seeber, 1993]).

Atomic clock frequency f0 = 10.23MHz
Frequency L1 154× f0

1575.420MHz
Wavelength L1 19.03 cm
Frequency L2 120× f0

1227.600MHz
Wavelength L2 24.42 cm
P code frequency (chipping rate) f0 = 10.23MHz (Mbps)
P code wavelength 29.31m
P code period 266 days, 7 days/satellite
C/A code frequency (chipping rate) f0/10 = 1.023MHz
C/A code wavelength 293.1m
C/A code period 1ms
Navigation message frequency 50 bps
Frame length 30 s
Total message length 12.5min

GPS Signal Modernisation: Introduction of New Signals

The GPS signal modernisation includes an additional Link 5 (L5) frequency
and several new ranging codes on the different carrier frequencies. They
are referred to as the civil signals L2C, L5C and L1C and the military M
code. All of them are right-hand circularly polarised.

Modernisation of the GPS system began in 2005 with the launch of the
first IIR-M satellite. This satellite supported the new military M signal
and the second civil signal L2C. This latter signal is specifically designed
to meet commercial needs, allowing the development of low-cost, dual-
frequency civil GPS receivers.
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The L2C code is composed of two ranging codes multiplexed in time: the
L2 Civil Moderate (L2CM) code and the L2 Civil Long (L2CL) code (for
more details see [Enge and Misra, 1999]). The L2C code is BPSK mod-
ulated onto the L2 carrier frequency and broadcast at a higher effective
power level than the original L1 C/A signal. This, together with its pow-
erful cross-correlation properties, facilitates tracking with large signal-level
variations from satellite to satellite,23 making reception easier under trees
and even indoors. This signal will also be interoperable with the Chinese
Beidou system. In December 2010 there were nine GPS satellites broad-
casting L2C (PRN01, 05, 07, 12, 15, 17, 25, 29, 31).24

The military M code signals are designed to use the edges of the band
with only a minor signal overlap with the pre-existing C/A and P(Y) sig-
nals (see Fig. 2.8). This military M code is modulated into L1 and L2
carriers using the Binary Offset Carrier (BOC) scheme (for more details
see [Avila-Rodriguez, 2008]). It has been designed for autonomous acquisi-
tion, so that a receiver is able to acquire the M code signal without access
to C/A or P(Y) code signals.

The GPS modernisation plan continued with the launch of the Block
IIF satellites that include, for the first time, the third civil signal on the
L5 band (i.e. within the highly protected ARNS band).25 This new L5C
signal has a new modulation type and was designed for users requiring SoL
applications. There are two signal components: the in-phase component
(L5-I) with data and ranging code, both modulated via BPSK onto the
carrier; and the quadrature component (L5-Q), with no data but also hav-
ing a ranging code BPSK modulated onto the carrier. This signal has an
improved code/carrier tracking loop and its high power and signal design
provide robustness against interference. Moreover, its higher chipping rate
than the C/A code (see Table 2.2) provides superior multipath performance.

The next step involves the Block III satellites, which will provide the
fourth civil signal on L1 band (L1C). This signal is designed to enable in-
teroperability between GPS and international satellite navigation systems
(such as Galileo).26 Multiplexed Binary Offset Carrier (MBOC) modula-
tion is used to improve mobile reception in cities and other challenging envi-
ronments. L1C comprises the L1C-I data channel and L1C-Q pilot channel.
The implementation proposed for MBOC is the Time Multiplexed BOC
(TMBOC). See [Avila-Rodriguez et al., 2006] and [Avila-Rodriguez, 2008]
for more details. This signal will be broadcast at the same frequency as the
original L1-C/A signal, which will be retained for backward compatibility.

Figure 2.8 shows the layout of the different GPS signals and ranging
codes for the different modernisation phases. Figure 2.15, at the end of
this chapter, shows a panel comparing the signals of the different GNSSs.

23C/A code acquisition may be impossible for very weak signals in the presence of a
strong C/A signal.

24Satellite PRN01/SVN49 (launched on 24 March 2009) also began transmitting the
data-less L5 test signal. This satellite was decommissioned from active service on 6 May
2011. See the status of the GPS constellation at http://tycho.usno.navy.mil/gpscurr.html .

25The first satellite (PRN25) was launched on 28 May 2010, with full L5 capability;
the second (PRN01) on 16 July 2011.

26Originally, the signal was developed as a common civil signal for GPS and Galileo, but
new satellite navigation providers (Beidou in China, QZSS in Japan) are also adopting
L1C as a future standard for international interoperability.
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Figure 2.8: Spectra of GPS

signals before (top) and after

modernisation (bottom).

Courtesy of Stefan Wallner.

Table 2.2: Current and new GPS navigation signals. All civil signals are provided free of

charge to all users worldwide (Open Services).

Link
Carrier freq. PRN code Modulation Code rate Data rate

Service
(MHz) Type (Mcps) (bps)

L1 1 575.420

C/A BPSK(1) 1.023 50 Civil
P BPSK(10) 10.23 50 Military
M BOCsin(10,5) 5.115 N/A Military
L1C-I data

MBOC(6,1,1/11) 1.023
50

Civil
L1C-Q pilot –

L2 1 227.600

P BPSK(10) 10.23 50 Military
L2C M

BPSK(1)
1.023

25
Civil

L –
M BOCsin(10,5) N/A Military

L5 1 176.450
L5-I data

BPSK(10) 10.23
50

Civil
L5-Q pilot -

Table 2.2 contains a summary of the current and future GPS signals,
frequencies and applied modulations. The ranging code rate and data rate
are also given in the table.

2.2.1.1 GPS Navigation Message

Every satellite receives from the ground antennas the navigation data,
which are sent back to users through the navigation message.

The navigation message contains all the necessary information to
allow users to perform the positioning service. This includes the ephemeris
parameters, needed to compute the satellite coordinates with sufficient
accuracy, the time parameters and clock corrections, needed to compute
satellite clock offsets and time conversions, the service parameters with
satellite health information, the ionospheric parameters model, needed for
single-frequency receivers, and the almanacs, allowing computation of the
position of ‘all satellites in the constellation’, with a reduced accuracy (1–
2 km of 1σ error), which is needed for acquisition of the signal by the
receiver. The ephemeris and clock parameters are usually updated every
two hours, while the almanac is updated at least every six days.
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Figure 2.9: Navigation message.

Subframe 1 Subframe 2 Subframe 3 Subframe 4 Subframe 5

Subframe ( 6 s )

Frame ( 30 s )

Information / control

bit ( 0,02 s )

TLM HOW

The current ‘legacy’ Navigation Message (NAV) is modulated on both
carriers at 50 bps. The whole message contains 25 pages (or ‘frames’) of
30 s each, forming the master frame that takes 12.5 min to be transmitted.
Every frame is subdivided into five subframes of 6 s each; in turn, every
subframe consists of 10 words, with 30 bits per word (see Fig. 2.9).

Every subframe always starts with the telemetry word TLM, which is
necessary for synchronisation. Next, the transference word (HOW) ap-
pears. This word provides time information (seconds of the GPS week),
allowing the receiver to acquire the week-long P(Y) code segment.

The contents of every subframe are as follows:

• Subframe 1 contains information about the parameters to be applied
to satellite clock status for its correction. These values are polynomial
coefficients that allow time onboard to be converted to GPS time. The
subframe also contains information on satellite health condition.

• Subframes 2 and 3 contain satellite ephemerides.

• Subframe 4 provides ionospheric model parameters (in order to adjust
for ionospheric refraction), UTC information, part of the almanac,
and indications whether the A/S is activated or not (which transforms
the P code into encrypted Y code).

• Subframe 5 contains data from the almanac and on constellation sta-
tus. It allows rapid identification of the satellite from which the signal
comes. A total of 25 frames are needed to complete the almanac.

Subframes 1, 2 and 3 are transmitted with each frame (i.e. they are
repeated every 30 s). Subframes 4 and 5 contain different pages (25 each)
of the navigation message (see Fig. 2.9). Thus, transmission of the full
navigation message takes 25× 30 s = 12.5 min.

The contents of subframes 4 and 5 are common to all satellites. Hence
the almanac data for all in-orbit satellites can be obtained from a single
tracked satellite.

GPS modernisation has introduced four new data messages: CNAV,
CNAV-2, MNAV and L5-CNAV. The first three are civil messages, while
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MNAV is a military message. They provide more accurate and frequent
message data than the legacy NAV.

CNAV and MNAV have a similar structure and modernised data format.
The new format allows for more flexibility, better control and improved con-
tent. Its design replaces the use of frames and subframes of data (repeated
in a fixed pattern) of the original ‘legacy’ NAV by means of a packetised
message-based communications protocol, where individual messages can be
broadcast in a flexible order with varying repeat cycles. Moreover, Forward
Error Correction (FEC) and advanced error detection (such as a Cyclic Re-
dundancy Check (CRC)) are used to achieve better error rates and reduced
data collection times. Furthermore, MNAV includes new improvements for
the security and robustness of this military message.

A preliminary description of the CNAV structure can be found in the
GPS Interface Specification [IS-GPS-200, 2010]. It includes up to 63 dif-
ferent message types, of which 15 have already been defined.

L5-CNAV is modulated onto the L5I signal component, containing ba-
sically the same information as NAV and CNAV, but in a different format.
CNAV-2 provides more accurate data, is modulated onto L1C-I and is di-
vided into frames, which are subdivided into three subframes.

2.2.1.2 User Domain GPS Performance

The positioning and timing accuracy for the GPS SPS is given in Table 2.3.
These figures are taken from the performance specification documents of
the SPS, namely [GPS/SPS-SS, 1995] and [GPS/SPS-PS, 2008], and are
based on a 95th percentile level and Signal In Space (SIS) only. The speci-
fications for the PPS are quite similar to those of the SPS with S/A off; see
[GPS/PPS-PS, 2007]. These values are very conservative, since the actual
performances usually exceed these official values. Indeed, SPS horizontal
and vertical accuracies are better than 7 and 12 m, respectively, for 95% of
the time that is currently observed. The modernised GPS, with the new
L5 signal, is expected to provide civil users with horizontal accuracies of
about 2–3 m for 95% of the time, ‘as good as PPS users currently enjoy’
[McDonald and Hegarty, 2000].

Table 2.3: Predictable positioning and timing accuracy for GPS SPS.

Error (95%)
SPS

S/A on S/A off
Position
Horizontal 100m 13m

Vertical 156m 22m
Time 340 ns 40 ns
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Figure 2.10: Spectra of Glonass

signals. Legacy FDMA signals

before and after modernisation

(top), and new CDMA signals

after modernisation (bottom).

Courtesy of Stefan Wallner.

2.2.2 Glonass Signals

Legacy Glonass signals are right-hand circularly polarised and centred on
two radio frequencies in the L band, referred to here as the G1 and G227

bands, see Fig. 2.10.

Two services are currently available from Glonass:

SPS: The Standard Positioning Service (or Standard Accuracy Signal Ser-
vice) is an open service, free of charge to worldwide users. The nav-
igation signal was initially provided only in the frequency band G1,
but since 2004 the new Glonass-M satellites also transmits a second
civil signal in G2.

PPS: The Precise Positioning Service (or High-Accuracy Signal Service) is
restricted28 to military and authorised users. Two navigation signals
are provided in the two frequency bands G1 and G2.

In contrast to GPS satellites that share the same frequencies, each
Glonass satellite broadcasts at a particular frequency within the band. This
frequency determines the frequency channel number of the satellite and al-
lows users’ receivers to identify the satellites (with the FDMA technique).
Glonass modernisation planning includes the transmission of CDMA sig-
nals in the G1, G2 and G3 (L3) bands, and even in the GPS L5 band, in
addition to transmitting legacy FDMA signals in the G1 and G2 bands (see
Fig. 2.10 and Fig. 2.15 below).

The actual frequency of legacy Glonass signal transmission on G1 and
G2 can be derived from the channel number k by applying the following
expressions:

Frequency band G1: f1(k) = 1602 + k × 9/16 = (2848 + k)× 9/16 MHz
Frequency band G2: f2(k) = 1246 + k × 7/16 = (2848 + k)× 7/16 MHz

The frequency numbers k were originally envisaged to provide 24 chan-
nels, with k = 1, . . . , 24, but according to the guidelines of the International
Electric Communication Union, all Glonass satellites launched after 2005

27We use G1 and G2 instead of L1 and L2 to better differentiate from GPS. Neverthe-
less, the ICD uses L1 and L2; see http://rniikp.ru/en/pages/about/publ/ikd51en.pdf .

28Although code P is not encrypted, its unauthorised use is not recommended by the
Russian Ministry of Defence because it may be changed without prior notice.
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2. GNSS Architecture

had to use k = −7, . . . , 6. This change was introduced to avoid interference
problems with radio astronomy frequency bands and satellite communica-
tion services. The reduction from 24 to 12 channels is compensated for at
setup, because two satellites in the same orbit transmit at exactly the same
frequency but occupy antipodal locations. Consequently, they will never be
simultaneously in view by any user on Earth’s surface (nevertheless, space
receivers will need to implement discriminating functions to distinguish the
satellites).

Two ranging codes, the coarse acquisition C/A (open civil code) and
the precise P (military) code, are modulated onto these frequencies to-
gether with a navigation message D, using the BPSK technique. The C/A
and P codes have periods of 1 ms and 1 s, and chip widths of 586.7 and
58.67 m, respectively, and are about two times noisier than the GPS ones
(see Table 2.4).

As in GPS, the C/A code was initially modulated only on G1, while
the military code P is modulated on both carrier frequencies, G1 and G2;
however, the new Glonass-M satellites (from 2004) also transmit the C/A
signal in the G2 frequency band. On the other hand, and unlike GPS,
in Glonass the PRN sequences of such codes are common to all satellites,
because the receiver identifies the satellite by its frequency.29

No S/A (i.e. intentional degradation of the standard accuracy signal)
is applied in Glonass, and no P-code encryption has been reported so far.
Although the military P code has not been officially published, it has been
deciphered by different research groups. Nevertheless, this code may be
changed by the Russian Ministry of Defence without prior warning.

Glonass Signal Modernisation: Introduction of New Signals and CDMA Usage

The modernisation of Glonass added a new third frequency G3 to the ARNS
band for the Glonass-K satellites. This signal will provide a third civil C/A2

and military P2 codes, and is especially suitable for SoL applications. The
plans for Glonass signal modernisation are summarised in Fig. 2.10 (further
details can be found in [Urlichich et al., 2011] and [Avila-Rodriguez, 2008]).

The addition of CDMA and FDMA signals was initiated first with the
Glonass-K launch in February 2011, providing CDMA signals at a frequency
f = 1 202.025 MHz in the G3 band (close to the Galileo E5b carrier).30

29Note that this applies for legacy signals where the FDMA technique is used. For
the new Glonass signals, the satellites use the same frequency and are identified with
different PRN codes using CDMA.

30In 2014 it is planned to launch the first Glonass-K2 satellite, with FDMA signals in
the G1 and G2 bands and CDMA signals in G1, G2 and G3 [Urlichich et al., 2011].
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Table 2.4: Legacy Glonass signal structure.

Atomic clock frequency f0 = 0.511MHz
Frequencies L1 9/16(2848 + k) =

1602.000 + 0.5625k MHz
Wavelength L1 18.7 cm (k = 0)
Frequencies L2 7/16(2848 + k) =

1246.000 + 0.4374k MHz
Wavelength L2 24.1 cm (k = 0)
P code frequency (chipping rate) 10f0 = 5.11Mcps
P code wavelength 58.67m
P code period 1 s
C/A code frequency (chipping rate) f0 = 0.511Mcps
C/A code wavelength 586.7m
C/A code period 1ms
Navigation message frequency 50 bps
Frame length 30 s (on CA), 10 s (on P)
Total message length 2.5min (on CA), 12min (on P)

Table 2.5: Legacy Glonass navigation Signals. All civil signals are provided free of charge

to all users worldwide (Open Services). The military codes are for authorised users only.

Note: k = 1, . . . , 24 for satellites launched before 2005; subsequently k = −7, . . . , 6.

Band
Carrier freq. PRN Modulation Code rate Data rate

Service
(MHz) code type (Mcps) (bps)

G1
1602.0000+ C/A BPSK(0.511Mcps) 0.511 50 Civil
+0.5625k P BPSK(5.11Mcps) 5.11 50 Military

G2
1246.0000+ C/A BPSK(0.511Mcps) 0.511 50 Civil
+0.4375k P BPSK(5.11Mcps) 5.11 50 Military

2.2.2.1 Glonass Navigation Message

Glonass satellites modulate two navigation messages at 50 bps onto the
standard (C/A) and high-accuracy (P) signals (Table 2.5), each message
giving users the necessary information for positioning (i.e. parameters to
compute the coordinates of the Glonass satellites, their clock offsets and
various other system parameters).

The navigation message of the standard accuracy signal (C/A) is broad-
cast as continuously repeating superframes with a duration of 2.5 min. Each
superframe consists of five frames of 30 s, and each frame consists of 15
strings of 2 s duration (100 bits long).

The message content divides the data into immediate data of the trans-
mitting satellite and non-immediate data for the other satellites, see
Fig. 2.11. The immediate data are repeated in the first four strings of every
frame and comprise the ephemeris parameters, satellite clock offsets, satel-
lite healthy flag and the relative difference between the carrier frequency of
the satellite and its nominal value. The non-immediate data are broadcast
in strings 5 to 15 of each frame (almanac for 24 satellites). Frames I to
IV contain the almanac for 20 satellites (5 per frame), and the fifth frame
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Figure 2.11: Legacy Glonass

navigation message structure

(source [GLONASS ICD, 2008]).

almanac for 4 satellites. The last two strings of frame 5 are reserved bits
(the almanac of each satellite uses two strings).

The ephemerides values are predicted from the SCC for a 24 h period,
and the satellite transmits a new set of ephemerides every 30 min. These
data differ from GPS data. Instead of Keplerian orbital elements, they
are provided as Earth-Centred, Earth-Fixed (ECEF)31 Cartesian coordi-
nates in position and velocity, with lunisolar acceleration perturbation pa-
rameters. Glonass-ICD [GLONASS ICD, 2008] provides integral equations
based on the fourth-order Runge–Kutta method, which includes the sec-
ond zonal geopotential harmonic coefficient. The almanac is quite similar to
the GPS one, in terms of modified Keplerian parameters, and it is updated
approximately once per day.

The navigation message of the high-accuracy signal (P) structure is not
officially published, but different research groups have decoded it. Accord-
ing to these investigations, each satellite transmits a superframe which is
composed of 72 frames, each containing five strings of 100 bits. A frame
needs 10 s to be transmitted, hence the total length of the message is 12 min.
The first three frames contain the ephemeris for the transmitting satellite.

31See Keplerian elements in section 3.2.1 and ECEF coordinates in section A.2.2.
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2.2.2.2 User Domain Glonass Performance

No standardised values are published on Glonass positioning and timing
accuracy, and the performance can change according to author. Table 2.6
contains the figures for the Glonass SPS [United Nations, 2004].

Table 2.6: Glonass SPS performance according to document [United Nations, 2004].

SPS accuracy (95%)
Horizontal Vertical Time

28m 60m 1µs

Information on the PPS is not included in Table 2.6 due to the lack of
data on this service’s performance.

Previous performance figures changed dramatically with successive satel-
lites. Indeed, the accuracy has been improving from about 25 m (1σ) in
2006 to about 5–7 m (1σ) in 2010 [Hein, G.W., 2011].

2.2.3 Galileo Signals

In FOC phase, each Galileo satellite will transmit 10 navigation signals
in the frequency bands E1, E6, E5a and E5b, each right-hand circularly
polarised. These signals are designed to support the different services that
will be offered by Galileo and EGNOS,32, based on various user needs as
follows:

OS: The Open Service (OS) is free of charge to users worldwide. Up
to three separate signal frequencies are offered within it. Single-
frequency receivers will provide performances similar to GPS C/A.
In general, OS applications will use a combination of Galileo and
GPS signals, which will improve performance in severe environments
such as urban areas.

PRS: The Public Regulated Service (PRS) is intended for the security
authorities (police, military, etc.) who require a high continuity of
service with controlled access. It is under governmental control. En-
hanced signal modulation/encryption is introduced to provide robust-
ness against jamming and spoofing. Two PRS navigation signals with
encrypted ranging codes and data will be available.

CS: The Commercial Service (CS) provides access to two additional signals
protected by commercial encryption (ranging data and messages).
Higher data rates (up to 500 bps) for broadcasting data messages are
introduced.

32The European Geostationary Navigation Overlay Service (EGNOS) is a Satellite-
Based Augmentation System (SBAS) that enhances the US GPS satellite naviga-
tion system to make it suitable for safety-critical applications such as flying air-
craft or navigating ships through narrow channels. More details can be found in
[Ventura-Traveset, J. and Flament, 2006] and at http://www.esa.int/esaNA/egnos.html .
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Figure 2.12: Spectra of Galileo

signals. Courtesy of Stefan

Wallner.

SAR: This service contributes to the international Cospas–Sarsat system
for Search and Rescue (SAR). A distress signal will be relayed to the
Rescue Coordination Centre and Galileo will inform users that their
situation has been detected.

SoL: The Safety-of-Life (SoL) Service is already available for aviation to
International Civil Aviation Organization (ICAO) standards thanks
to EGNOS; Galileo will further improve the service performance.

As in GPS, all satellites share the same frequencies, and the signals
are differentiated by the CDMA33 technique [Galileo SIS ICD, EU, 2010].
As mentioned earlier, these signals can contain data and pilot channels.
Both channels provide ranging codes, but the data channels also include
navigation data. Pilot channels (or pilot tones) are data-less signals, so no
bit transition occurs, thus helping the tracking of weak signals. The spectra
of Galileo signals are given in Fig. 2.12, where the data and pilot channels
are plotted in orthogonal planes.

A brief description of each signal follows:34

E1 supports the OS, CS, SoL and PRS services. It contains three nav-
igation signal components in the L1 band. The first one, E1-A,
is encrypted and only accessible to authorised PRS users; it con-
tains PRS data. The other two components, E1-B and E1-C, are
open access signals with unencrypted ranging codes accessible to all
users. E1-B is a data channel and E1-C a pilot (or data-less) chan-
nel. The E1-B data stream, at 125 bps, also contains unencrypted
integrity messages and encrypted commercial data. The MBOC mod-
ulation is used for the E1-B and E1-C signals, which is implemented
by the Composite Binary Offset Carrier (CBOC), see Table 2.7 and
Fig. 2.12. More details can be found in [Avila-Rodriguez et al., 2006]
and [Avila-Rodriguez et al., 2007]. (Note that the E1 band is shared
with GPS L1 and Beidou B1, see Fig. 2.15 below.)

E6 is a dedicated signal for supporting the CS and PRS services. It pro-
vides three navigation signal components transmitted in the E6 band.
As with E1, the first one, E6-A, is encrypted and only accessible to
authorised PRS users, carrying PRS data. The other two, E6-B and
E6-C, are commercial access signals and include a data channel E6-B
and a pilot (or data-less) channel E6-C. The E6 ranging codes and

33That is, where the spread spectrum codes enable the satellite to transmit at the same
frequencies simultaneously.

34Mainly from [Galileo SIS ICD, EU, 2010].

31



TM-23/1

data are encrypted. A data rate of 500 bps allows the transmission of
added-value commercial data. (Note that the E6 band is shared with
Beidou B3, see Fig. 2.15 below.)

E5a supports OS. It is an open access signal transmitted in the E5a band
and includes two signal components, a data channel, E5a-I, and a
pilot (or data-less) channel, E5a-Q. The E5a signal has unencrypted
ranging codes and navigation data, which are accessible to all users. It
transmits the basic data to support navigation and timing functions,
using a relatively low 25 bps data rate that enables more robust data
demodulation. (Note that the E5a band is shared with GPS L5,
Beidou B2a and future Glonass L5 signals, see Fig. 2.15 below.)

E5b supports the OS, CS and SoL services. It is an open access signal
transmitted in the E5b band and includes two other signal compo-
nents: the data channel E5b-I and the pilot (or data-less) channel
E5b-Q. It has unencrypted ranging codes and navigation data acces-
sible to all users. The E5b data stream also contains unencrypted
integrity messages and encrypted commercial data. The data rate is
125 bps. (Note that the E5b band is shared with Beidou B2b and
Glonass G3 (slightly shifted), see Fig. 2.15 below.)

The E5a and E5b signal components are modulated onto a single E5
carrier frequency at 1 191.795 MHz using a technique known as Alternate
Binary Offset Carrier (AltBOC). The composite of the E5a and E5b signals
is denoted as the E5 signal and can be processed as a single large-bandwidth
signal with an appropriate user receiver implementation, which results in a
low-multipath and tracking noise signal, see [Avila-Rodriguez, 2008].

A summary of Galileo signals, frequencies and applied modulations is
presented in Table 2.7. The ranging code rate and data rate are also given
in the table.

Table 2.7: Galileo navigation signals. The two signals located in the E5a and E5b bands

respectively are modulated onto a single E5 carrier frequency of 1191.795 MHz using the

AltBOC technique: AltBOC(15,10).

Band
Carrier freq. Channel or Modulation Code rate Data rate

Services
(MHz) sig. comp. type (Mcps) (bps)

E1 1575.420
E1-A data BOCcos(15,2.5) 2.5575 N/A PRS
E1-B data

MBOC(6,1,1/11) 1.023
125 OS, CS,

E1-C pilot – SoL

E6 1278.750
E6-A data BOCcos(10,5)

5.115
N/A PRS

E6-B data
BPSK(5)

500
CS

E6-C pilot –

E5a 1176.450
E5a-I data

BPSK(10) 10.23
25

OS
E5a-Q pilot –

E5b 1207.140
E5b-I data

BPSK(10) 10.23
125 OS, CS,

E5b-Q pilot – SoL
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Table 2.8: Contents of the Galileo message types (from [Hofmann-Wellenhof et al., 2008]).

Message-type F/NAV I/NAV C/NAV G/NAV
Galileo Services OS OS/CS/SoL CS PRS
Channels E5a-I E1B E5b-I E6B E1A E6A
Navigation/Positioning × × × ×
Integrity × × ×
Supplementary ×
Public Regulated ×
Search and Rescue ×

2.2.3.1 Galileo Navigation Message

The Galileo satellites will broadcast five types of data in four naviga-
tion messages: the Freely accessible Navigation Message (F/NAV) and In-
tegrity Navigation Message (I/NAV), the Commercial Navigation Message
(C/NAV) and the Governmental Navigation Message (G/NAV). Table 2.8
summarises the contents of the Galileo messages, with an indication of the
associated channels and services.

The Galileo ephemeris parameters are Keplerian-like orbital elements as
in GPS (see section 3.3.1). The nominal period update is 3 h and is valid
for a 4 h time interval. The 1 h overlap interval is intended to help with
short outages or delays. The Galileo almanac is also similar to the GPS
and Glonass ones.

The Supplementary data are expected to provide information to support
the different envisaged commercial services as differential corrections to the
High-Precision Positioning Service (HPPS), and different kinds of data for
weather alerts, traffic information, etc. The data are encrypted to control
access to authorised users by the service providers.

The Public Regulated data are under governmental control and are de-
voted to the PRS. The system will guarantee a high continuity of service
with controlled access by encryption of data.

The Search and Rescue data will provide the capability to send ac-
knowledgement SAR messages to a beacon equipped with a suitable Galileo
receiver.

The complete navigation message is transmitted on each data channel
as a sequence of frames (Fig. 2.13). A frame comprises a certain number
of subframes, and a subframe comprises several pages (Table 2.9). This
arrangement allows the three different main categories of data to be trans-
mitted:

• Repeated at a fast rate (for urgent data): page.

• Medium rate (like data required for a warm start): subframe.

• Slow rates (like data required for a cold start): frame.

33



TM-23/1

Figure 2.13: Galileo navigation

message structure (from

[Powe, M., 2006]).

Superframe
..............

Frame 1 Frame 2 Frame (N)............................

Subframe 1 Subframe 2 Subframe (M).............. ..............

Frame (i)

Subframe (j)

FEC Encoded & Block Interleaved

SW Data Field CRC Tail Bits

The page starts with a Synchronisation Word (SW) followed by the
data field. After the data, Cyclic Redundancy Check (CRC) parity bits are
provided to detect the reception of corrupted data. The page ends with
tail bits for the Forward Error Correction (FEC) encoding.

Three levels of error coding are applied to the Galileo message data
stream:
(1) a CRC with error detection capabilities after recovery of the received
data; (2) a one-half rate FEC, with tail bits (sequence of zeros) to allow
Viterbi decoding; and (3) block interleaving of the resulting frames, to
provide robustness to the FEC decoding algorithm by avoiding packets of
errors. This scheme allows the bit error rate to be reduced at increased
data rates.

Table 2.9: Frame structure.

Message Channel
Data rate Page dura- Pages in a Subframes
(bps) tion (s) Subframe in a frame

F/NAV E5a-I 25 10 5 12
I/NAV E1B, E5b-I 125 1 30 18
C/NAV E6B 500 1 15 8
G/NAV E1A, E6A N/A
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2.2.3.2 User Domain Galileo Performance

The performance requirements for the Galileo services are summarised in
Table 2.10.

Table 2.10: Performance requirements (from [Hofmann-Wellenhof et al., 2008], page 371)

for the Galileo services: (1)single-frequency accuracy depends on which frequency is used;
(2) offset Galileo to UT over 24 h. Integrity service performance is excluded from this table

because this service is being redefined.

Satellite-only Open Commercial Public Regulated
Service Service Service Service
Coverage Global Global Global
Accuracy (95%)
Single-freq.(1) 15m/24m H; 35m V 15m/24m H; 35m V
Dual-freq. 4m H; 8m V 6.5m H; 12m V
Timing accu-

30 ns 30 ns 30 ns
racy (95%)(2)

Service
99.5% 99.5% 99.5%

availability

Access control

Free open Controlled access Controlled access
access of ranging codes of ranging codes

and navigation and navigation
data message data message

Certification – Guarantee of Built for
and service service possible accreditation and
guarantees guarantee of

of service

2.2.4 Beidou Signals

Beidou Phase II/III satellites will transmit right-hand circularly polarised
signals centred on three radio frequencies in the L band, referred to here
as the B1, B2 and B3 bands, see Fig. 2.14.

Two services are foreseen for the Beidou system (in Phase II as a re-
gional service and Phase III as a global service):

Open Service: The SPS (or Standard Accuracy Signal Service) is an open
service, free of charge to all users.

Authorised Service: This service will ensure very reliable use, provid-
ing safer positioning, velocity and timing services, as well as system
information, for authorised users [United Nations, 2010].

Like GPS, Galileo or the new Glonass signals, Beidou ranging signals are
based on the CDMA technique. The different navigation signals, structure
and supported services, according to the current signal plan for Phase II
and Phase III, are summarised in Tables 2.11 and 2.12 and illustrated in
Fig. 2.14. See also Fig. 2.15 which depicts all the GNSS signals.
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Figure 2.14: Spectra of Beidou

signals: Phase II (top) and

Phase III (bottom). Courtesy of

Stefan Wallner.

In late December 2011, an English version of the ‘test version’ of the
ICD for Beidou [BeiDou-SIS-ICD-Test, 2011] was published. This is an 11-
page document that covers the open B1 civil signal centred at 165.098 MHz
(see Table 2.11). The official ICD [BeiDou-SIS-ICD, 2012] was published
one year after. This 77-page document provides details of the navigation
message, including parameters of the satellite almanacs and ephemerides
that were missing in previous ‘test version’ of the ICD.

Table 2.11: Beidou Phase II navigation signals [Hein, G.W., 2010]. Quadrature Phase-

Shifted Keying (QPSK) and BPSK modulation squemes are applied.

Band
Carrier freq. PRN code Modulation Code rate

Service
(MHz) type (Mcps)

B1 1561.098
B1-I

QPSK(2) 2.046
Open

B1-Q Authorised

B2 1207.14
B2-I BPSK(2) 2.046 Open
B2-Q BPSK(10) 10.23 Authorised

B3 1268.52 B3 QPSK(10) 10.23 Authorised

Table 2.12: Beidou Phase III navigation signals. [United Nations, 2010].

Band
Carrier freq. PRN code Modulation Code rate Data rate

Service
(MHz) type (Mcps) (bps)

B1 1575.42
B1-C_D

MBOC(6,1,1/11) 1.023
50

Open
B1-C_P –
B1 BOC(14,2) 2.046 50 Authorised

B2 1191.795

B2-a_D

AltBOC(15,10) 10.23

25

Open
B2-a_P –
B2-b_D 50
B2-b_P –

B3 1268.52
B3 QPSK(10) 10.23 500

AuthorisedB3-A_D
BOC(15,2.5) 2.5575

50
B3-A_P –
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2.2.4.1 User Domain Beidou Performances

Since 27 December 2011, Beidou has provided an initial Phase II operating
service to China and the neighbouring area, using a reduced constellation
of 10 satellites. According to the press statement at the conference of the
State Council Information Office [Chengqi, R., 2011], ‘Through previous
testing upon the system, the main service performances are:

• Service coverage area: from 84◦E to 160◦E, from 55◦S to 55◦N.

• Positioning accuracy: Horizontally, 25 meters, Vertically, 30 meters.

• Velocity accuracy: 0.4 meters per second.

• Timing accuracy: 50 nanoseconds.’

Following the launching plan for the Beidou system, four more naviga-
tion satellites were launched in 2012 to further expand the service area, im-
prove performances and provide services for most parts of the Asia-Pacific
region. Completion of the 35-satellite constellation is projected for 2020
(Beidou Phase III).

The expected open free service performances in Beidou Phase III are
summarised as follows: [United Nations, 2010]:

• Coverage area: global.

• Positioning accuracy: 10 m (95%).

• Velocity accuracy: 0.2 m/s.

• Timing accuracy: 20 ns.

2.2.5 Summary of GNSS Signals

To summarise the previous sections, Fig. 2.15 compares the different GNSS
signals and their relative allocations on the associated frequency bands.

2.2.5.1 Authors’ Disclaimer

The aim of this chapter was not to provide an extensive description of the
current and future GNSSs but to give an overview of them. Note that the
architectures, signal plans, performances, etc., presented above are subject
to continuous evolution and upgrading, so some information may become
outdated.
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Figure 2.15: Global layout summarising the GPS, Glonass, Galileo and Beidou (Compass) signals. Courtesy of Stefan

Wallner.
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3. GNSS Time Reference, Coordinate
Frames and Orbits

3.1 Time and Reference Frames

Accurate and well-defined time references and coordinate frames are
essential in GNSSs, where positions are computed from signal travel time
measurements and provided as a set of coordinates.

This section contains a brief review of the fundamentals of time and
coordinate frames.The aim here is to provide the necessary background to
follow the remaining chapters of this book. A deeper treatment of these
topics is provided in Appendix A, where the concepts and equations for
time and coordinate frame transformations are provided in detail.

3.1.1 Time

Everyday life follows the alternation of day and night, and the seasons of
the year, so the initial conception of time was based on the motion of the
Sun. However, as science and technology evolved, more precise, uniform
and well-defined time scales were needed.

Several time references are currently in operation, based on different
periodic processes associated with Earth’s rotation, celestial mechanics or
transitions between the energy levels in atomic oscillators. Table 3.1 sum-
marises the different time systems and their associated periodic process.

Table 3.1: Different time systems (from [Hofmann-Wellenhof et al., 2003]).

Periodic process Time
Earth’s rotation Universal Time (UT0, UT1, UT2)

Greenwich Sidereal Time (Θ)
Earth revolution Terrestrial Dynamic Time (TDT)

Barycentric Dynamic Time (TDB)
Atomic oscillators International Atomic Time (TAI)

Coordinated Universal Time (UTC)
GNSS Reference Time
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Universal and sidereal times are associated with the daily rotation of the
Earth. Universal Time (solar time) uses the Sun as a reference. Sidereal
time uses the vernal equinox (the Aries point).1 This leads to the fact that,
in a year, both times differ by 24 h (one lap) and, hence, the sidereal day
is shorter than the solar day by 3m 56s

·4, see section A.1.1.3. That is,

1 mean sidereal day = 1 mean solar day − 3m 56s
·4

UT (UT0, UT1, UT2) is not completely uniform,2 so atomic time TAI
was introduced to achieve a more uniform time scale. TAI and UT ac-
cumulate drift over time and, consequently, UTC was defined, which is
an atomic time that remains within 0.9 s of UT1. This is maintained by
the systematic introduction of a certain number of seconds called leap sec-
onds.3 Over time, the difference between UTC and TAI varies in integer
leaps of 1 s. UTC is generated by the Bureau International des Poids et
Mesures (BIPM), located in Paris. Leap seconds are determined by the
International Earth Rotation and Reference Systems Service (IERS).

UTC is obtained from about 250 caesium clocks and hydrogen masers lo-
cated in about 65 different laboratories, distributed around the world, and
applying a set of algorithms to ensure a uniform time. It is not determined
in real time, but generated with a delay of about half a month. Real-
time estimates of UTC are computed and provided by different centres,
such as UTC(USNO), from the United States Naval Observatory (USNO);
UTC(NIST), from the National Institute of Standards and Technology
(NIST); and UTC(SU) from Russia. In general, UTC(k) is a realisation of
UTC by a given laboratory k, see [Lewandowski et al., 2006].

The following relations are met (see Appendix A.1.5):

TAI=UTC+1s × n, TAI=TDT−32s
·184

UTC=UT1+dUT1, |dUT1| < 0s
·9

where n is the number of leap seconds introduced for a given epoch (e.g.
1 Jan 1999 n = 32, 1 Jan 2006 n = 33, 1 Jan 2009 n = 34, 1 Jul 2012
n = 35); see Fig. 3.1.

GPS Time (GPST) is a continuous time scale (no leap seconds) defined
by the GPS control segment on the basis of a set of atomic clocks at the
MCS and onboard the satellites. It starts at 0h UTC (midnight) of 5–6
January 1980 (6d

· 0). At that epoch, the difference TAI−UTC was 19 s,
hence GPS−UTC = n− 19s. GPST is synchronised with UTC(USNO) at
the 1 ms level (modulo 1 s), but actually kept within 25 ns.

1The Aries point is a fictitious direction pointing to the Aries Constellation about
2000 years ago. Due to precession of the equinox (see page 43), the Aries point moves
continuously over the ecliptic (apparent orbit of the Sun relative to Earth) by about
50.26′′ each year, therefore in 2000 years it moves through an arc of 30◦ in a retrograde
way. Currently, the Aries point is moving out of the Pisces Constellation and entering
Aquarius.

2Earth’s rotation is not uniform. Different phenomena such as tidal friction, mass
transport due to seasonal changes, earthquakes, etc., affect the distribution of the Earth’s
mass (moment of inertia), introducing fluctuations in its rotation. UT0 is a time scale
based on the instantaneous rotation of the Earth, UT1 is adjusted from observed periodic
variations (polar motion effects, up to 0.06 s), and UT2 is obtained by correcting its other
additional irregularities.

3From 1 January 1958 (where TAI = UTC = UT1) until 1 July 2012, 35 s were added.
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Glonass Time (GLNT) is generated by the Glonass Central Synchro-
niser. The difference between UTC(SU) and GLNT should not exceed 1 ms
plus 3 h4 (i.e., tGlonass = UTC(SU) + 3h − τ , where |τ | < 1 ms), but τ is
typically better than 1µs. Note that, unlike GPS, Galileo or Beidou, the
Glonass time scale implements leap seconds, like UTC.

Galileo System Time (GST) is a continuous time scale maintained by
the Galileo central segment and synchronised to TAI with a nominal offset
below 50 ns. The GST start epoch is 0h UTC on Sunday, 22 August 1999.

BeiDou Time (BDT) is a continuous time scale starting at 0h UTC on
1 January 2006, and is synchronised to UTC within 100 ns (modulo 1 s).

In order to facilitate calculations for long time intervals,5 the Julian date
is used (after Julio Scalier). It has as reference epoch the 1st of January of
4713 BC and, starting from there, days are counted in a correlative way.
The Julian Day (JD) starts at 12h of the corresponding civil day (e.g. 6d

· 0
January 1980 = JD 2 444 244.5). The current reference standard epoch for
the scientific community is

J2000.0 = 1d.5 January 2000 = JD 2 451 545.0

The Modified Julian Day (MJD) is also used, and is obtained by sub-
tracting 2 400 000.5 days from the JD.

The following expression gives the JD for a civil date6 (YYMMDDUT)
(see equation (A.4) and, for instance, program sub cal2cal.f in Vol-
ume II):

JD = int[365.25× y] + int[30.6001× (m+ 1)] + DD + UT(h)/24 + 1 720 981.5

where:
y = YY − 1, m = MM + 12, MM ≤ 2

y = YY, m = MM, MM > 2

4The difference between Moscow time and Greenwich Mean Time (GMT).
5The calendar has undergone important adjustments throughout history, due to the

fact that the length of a year is not exactly 365 days. For example, on 5 October
1582, Pope Gregory XIII introduced a leap period of 10 days – the Gregorian reform
– so that the date became Friday the 15th. As an anecdote, Santa Teresa de Jesus
died on Thursday the 4th and was buried on Friday the 15th, the following day (see
http://www.newadvent.org/cathen/14515b.htm).

6This expression is valid between March 1900 and February 2100.
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From the JD, and taking into account that GPS reference date (6d
· 0

January 1980) corresponds to JD 2 444 244.5, one can immediately obtain
the GPST. Then, using modulo 7, the GPS week7 can be found.

The inverse transformation is given in Appendix A by expressions (A.6).

As another example, the 00:00 hours (Moscow time) on 1 January 1975
(21:00 hours GMT on 31 December 1974) used by Glonass as a reference
time in some computations corresponds to JD 2 442 413.375 (GMT).

Greenwich Mean Sidereal Time (GMST) (θG) and UT are related by
the following expression (see equation (A.34) and program sub sid.f in
Volume II):

θ
G

= r ·UT1 + 6h41m50s·5481+8 640 184s·812 866Tu+0s·093 104T 2
u−6s·2·10−6 T 3

u

where: r = 1.002 737 909 3 and Tu = (JD[UT1 date] − 2 451 545.0)/36 525.0

3.1.2 Reference Systems and Frames

Satellite coordinates and users’ receivers must be expressed in a well-defined
reference system. Therefore an accurate definition and determination of
such systems is essential to ensure precise positioning in GNSS. Two of
the main reference systems used in satellite navigation (see Fig. 3.2) are
introduced below: the Conventional Celestial Reference System (also called
the Conventional Inertial System, CIS) and the Conventional Terrestrial
Reference System (also called the Coordinated Terrestrial System, CTS).

• Conventional Celestial Reference System (CRS): This is a quasi-
inertial reference system.8 It has its origin at the Earth’s centre of
mass, or geocentre. The X-axis points in the direction of the mean
vernal equinox at the J2000.0 epoch, the Z-axis is orthogonal to the
plane defined by the mean equator at the J2000.0 epoch (fundamental
plane) and the Y-axis is orthogonal to the former axes, so the system
is directly (right-handed) oriented. The practical implementation is
called the (conventional) Celestial Reference Frame (CRF)9 and it
is determined from a set of precise coordinates of extragalactic radio
sources (i.e. it is fixed with respect to distant objects of the Universe).
The mean equator and equinox J2000.0 were defined by International
Astronomical Union (IAU) agreements in 1976, with 1980 nutation
series as in [Seidelmann, 1982] and [Kaplan, 1981], which are valid an-
alytic expressions for long time intervals (the former reference epoch
was 1950.0).

• Conventional Terrestrial Reference System (TRS): This is a refer-
ence system co-rotating with the Earth in its diurnal rotation, and

7The GPS week starts from Saturday night to Sunday.
8It is not strictly an inertial system, because it is affected by the acceleration due to

Earth’s motion around the Sun (annual revolution).
9Note that reference system and reference frame are different concepts. The first is

understood as ‘a theoretical definition’, including models and standards for its imple-
mentation, while the second is its ‘practical implementation’ through observations and a
set of reference coordinates (a set of fundamental stars for the CRF, or fiducial stations,
for the Terrestrial Reference Frame).
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Figure 3.2: Reference systems:
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is also called the Earth-Centred, Earth-Fixed (ECEF) system. Its
definition involves a mathematical model of the physical Earth in
which point positions are expressed and have small temporal varia-
tions due to geophysical effects (plate motion, tides, etc.). The TRS
has its origin in Earth’s centre of mass. The Z-axis is identical to the
direction of Earth’s axis of rotation as defined by the Conventional
Terrestrial Pole (CTP), the X-axis is defined as the intersection of the
equatorial plane (orthogonal to the Z-axis) with the mean Greenwich
meridian, and the Y-axis is orthogonal to both of them, directly ori-
enting the system. The realisation of this system is called the (con-
ventional) Terrestrial Reference Frame (TRF) and it is determined
through the coordinates of a set of points on Earth serving as refer-
ence points.10 An example of the TRF is the International Terrestrial
Reference Frame (ITRF), introduced by the International Earth Ro-
tation and Reference Systems Service (IERS) and updated every year
(ITRF98, ITRF99, etc.). Other terrestrial reference frames are the
World Geodetic System 84 (WGS-84), which is applied for GPS, the
Parametry Zemli 1990 (Parameters of the Earth 1990) (PZ-90) for
Glonass, the Galileo Terrestrial Reference Frame (GTRF) for Galileo,
or the China Geodetic Coordinate System 2000 (CGCS2000) for Bei-
dou.

3.1.2.1 Transformation between Celestial and Terrestrial Frames

Coordinate transformations between CRF and TRF frames are performed
by mean of rotations corresponding to precession, nutation and pole move-
ment, described briefly as follows.

• Precession and nutation (forced rotation): Earth’s axis of rotation
(and its equatorial plane) is not kept fixed in space (i.e. in relation
to so-called ‘fixed stars’), but rotates about the pole of the ecliptic,
as shown in Fig. 3.3. This movement is due to the effect of the
gravitational attraction of the Moon and the Sun and major planets
over the terrestrial ellipsoid. The total movement can be split into a

10A conventional TRF is defined as a set of physical points with precisely deter-
mined coordinates in a specific coordinate system that is the realisation of an ideal TRS
[Boucher and Altamimi, 2001].
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secular component (precession, with a period of 26 000 years) and a
periodic component (nutation, with a period of 18.6 years).

• Pole movement (free rotation): Due to the structure of Earth’s dis-
tribution of mass and its variation, Earth’s axis of rotation is not
fixed in relation to Earth’s crust. It moves about on the surface of
Earth within a square of about 20 m side in relation to a point with
fixed coordinates on Earth. This movement has a period of about
430 sidereal days (the Chandler period). On the other hand, Earth’s
velocity of rotation is not constant but changes in time (although in
very small quantities11), as mentioned in the previous section.

Detailed expressions for the transformation between the CRF and TRF
are given in Appendix A. The following equations briefly summarise such
a transformation.

For a given epoch t, the coordinate transformation can be decomposed
into a rotation matrix (i.e. orthogonal matrix)12 product as

[TRF] = RM(t) RS(t)N(t)P(t)[CRF] (3.1)

and the inverse transformation

[CRF] = PT (t)NT (t)RS
T (t)RM

T (t) [TRF] (3.2)

where:

[CRF] is the coordinate vector in the CRF,

[TRF] is the coordinate vector in the TRF,

P is the transformation matrix associated with the precession

between the reference epoch and the epoch t,

N is the transformation matrix associated with the nutation at

epoch t,

RS is the transformation matrix associated with Earth’s

rotation around the Celestial Ephemeris Pole (CEP) axis,

RM is the transformation matrix associated with the polar

motion.

The matrices P and N are associated with the rotations needed to trans-
form the coordinates from the [CRF] to the [CEP]. They are provided
by analytical expressions and do not require external parameters (see Ap-
pendix A.2.5.1).

The matrices RS and RM are associated with the rotations needed to
transform the coordinates from the [CEP] to the [TRF]. Their compu-
tation requires the Earth Rotation Parameters (ERP) and Earth Orienta-
tion Parameters (EOP) files that are compiled periodically (see the website
http://acc.igs.org). More details can be found in Appendix A.2.5.2.

The transformation matrix for the polar motion is (see equation (A.38)
in Appendix A)

RM(t) = R2(−xp) R1(−yp) (3.3)

11Due to the friction of water in shallow seas, atmospheric movements, abrupt dis-
placements in Earth’s interior (in 1955, the rotation suddenly slowed by 41 · 10−6 s), etc.
Note that TRS is tied to the Greenwich meridian and therefore rotates with Earth.

12Note that these matrices verify RT (θ) = R−1(θ) = R(−θ).
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Figure 3.3: Transformations

between the CRF and TRF.

where xp and yp are the coordinates of the CEP in the TRF, and R1 and
R2 are the rotation matrices defined by equation (3.6) below.

The transformation matrix associated with Earth’s rotation around the
CEP-axis is given by (see also equation (A.32) in Appendix A)

RS(t) = R3(ΘG) (3.4)

where ΘG is the Greenwich true sidereal time at epoch t and R3 is from
equation (3.6) below.

Figure 3.3 outlines the transformation between the celestial and terres-
trial frames. Through precession and nutation corrections, the mean equa-
tor and mean equinox J2000.0 (γM ) are transformed to the true equator
and true equinox (γT ) at the epoch of observation. They define a reference
system with the Z-axis in the direction of the instantaneous axis of rota-
tion of Earth (CEP), and with the X-axis pointing to the true Aries point.
Finally, using ERP and EOP files, the CEP system is transformed to the
TRF.13

3.1.2.2 Transformation between Terrestrial Frames

From elemental linear algebra, all transformations between two Carte-
sian coordinate systems can be decomposed into a shift vector (∆X =
[∆x,∆y,∆z]), three consecutive rotations around the coordinate axes
(θ1, θ2, θ3), and a scale factor (α). That is, they can be described by
the following equation, which involves seven parameters:

XTRF2 = ∆X + α R1[θ1] R2[θ2] R3[θ3] XTRF1 (3.5)

13Precession and nutation series (defined for the mean equator and equinox J2000.0
in the CRF) have valid analytical expressions for long time intervals. But the rota-
tion and orientation parameters of Earth cannot be modelled theoretically and must be
periodically updated using observations.
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where

R1[θ] =

 1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 , R2[θ] =

 cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ



R3[θ] =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1


(3.6)

By adopting the convention used by IERS, equation (3.5) can be written
as x

y

z


TRF2

=

 x

y

z


TRF1

+

 T1

T2

T3

+

 D −R3 R2

R3 D −R1

−R2 R1 D


 x

y

z


TRF1

(3.7)

where T1, T2, T3 are three translation parameters, D is a scale factor and
R1, R2 and R3 are three rotation angles.

Transformation parameters from ITRF2000 to past ITRFs are listed
in table 4.1 of the IERS Conventions (2003) [McCarthy and Petit, 2004].
FORTRAN code trnfsp3n.f implementing this transformation and several
parameter transformation files from the International GNSS Service (IGS)
can be found in ftp://igscb.jpl.nasa.gov/pub/resource/tutorial/APPENDIX
IGS ITRF.txt. See laboratory exercise 6 of session 3.3 in Volume II.

3.1.3 GNSS Reference Frames

Brief descriptions of the GPS WGS-84, Glonass PZ-90, Galileo GTRF and
Beidou CGCS2000 reference frames are given below.

3.1.3.1 GPS Reference Frame WGS-84

From 1987, GPS has used the World Geodetic System WGS-84, developed
by the US DoD, which is a unified terrestrial reference system for position
and vector referencing.14 Indeed, the GPS broadcast ephemerides are linked
to the position of the satellite antenna phase centre in the WGS-84 reference
frame. Thus, the user’s receiver coordinates will be expressed in the same
ECEF frame.

The initial implementation of WGS-84 was realised from a set of more
than a thousand terrestrial sites, whose coordinates were derived from tran-
sit observations.15 Successive refinements (which also led to some adjust-
ments of the fundamental constants), using more accurate coordinates of
the MS, approximate some ITRS realisations. For instance, realisations

14The document ‘Modern Terrestrial Reference Systems PART 3: WGS 84 and ITRS’
contains data and interesting references on WGS-84 and International Terrestrial Refer-
ence System (ITRS) (http://www.ngs.noaa.gov/CORS/Articles/Reference-Systems-Part-
3.pdf ).

15With an accuracy level of 1–2 m, while the accuracy of the ITRF reference stations
is at the centimetre level.
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WGS-84(G730)16 and WGS-84(G873) correspond to ITRF92 and ITRF94,
respectively. The refined frame WGS-84(G1150) was introduced in 2002,
and agrees with ITRF2000 at the centimetre level.

The parameters of the WGS-84 ellipsoid are given in Table 3.2.

Table 3.2: Ellipsoidal parameters of WGS-84 (revised in 1997).

Ellipsoid
Semi-major axis of the ellipse a 6 378 137.0m
Flattening factor f 1/298.257 223 563

Earth’s angular velocity ωE 7 292 115.0 · 10−11 rad/s
Gravitational constant µ 3 986 004.418 · 108 m3/s2

Speed of light in vacuum c 2.997 924 58 · 108 m/s

3.1.3.2 Glonass Reference Frame PZ-90

The Glonass broadcast ephemerides are given in the PZ-90 reference frame.
As with WGS-84, this is an ECEF frame with a set of associated funda-
mental parameters (see table 3.3 from [GLONASS ICD, 2008]).

The determination of a set of parameters to transform the PZ-90 coor-
dinates to ITRF97 was the target of the International Glonass Experiment
(IGEX-98). [Boucher and Altamimi, 2001] present a review of the IGEX-
98 experiment and, as a conclusion, they suggest the following transfor-
mation17 from (x, y, z) in PZ-90 to (x′, y′, z′) in WGS-84, to metre-level
accuracy: x′y′

z′

 =

 xy
z

+

 −3 ppb −353 mas −4 mas

353 mas −3 ppb 19 mas

4 mas −19 mas −3 ppb


 xy
z

+

 0.07 m

−0.0 m

−0.77 m

 (3.8)

Following the notation of equation (3.7), the previous transformation is
defined by the following table of parameters:

T1 T2 T3 D R1 R2 R3

(cm) (ppb) (mas)

7 0 −77 −3 −19 −4 353

According to the Glonass modernisation plan, the ephemeris informa-
tion implementing the PZ-90.02 reference system was updated on all op-
erational Glonass satellites from 12:00 to 17:00 UTC, 20 September 2007.
From this time on, the satellites have been broadcasting in PZ-90.02. This
ECEF reference frame is an updated version of PZ-90, the closest one to
ITRF2000.

16‘G’ indicates that it has been exclusively obtained with GPS observations and ‘730’
indicates the GPS week.

17Where mas stands for milliarcseconds (1 mas = 4.848 136 81 · 10−9 rad); and ppb
stands for parts per billion (1 ppb = 10−9).
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The transformation from PZ-90.02 to ITRF2000 contains only an ori-
gin shift vector, but no rotations or scale factor, as shown in the following
equation [Revnivykh, 2007] (see laboratory exercise 6 of session 3.3 in Vol-
ume II):  x

y

z


ITRF2000

=

 x

y

z


PZ-90.02

+

 −0.36 m

0.08 m

0.18 m

 (3.9)

The parameters associated with PZ-90 and PZ-90.02 are given in Ta-
ble 3.3 ([GLONASS ICD, 1998]; [GLONASS ICD, 2008]).

Table 3.3: Ellipsoidal parameters of PZ-90 and PZ-90.02.

Ellipsoid
Semi-major axis of the ellipse a 6 378 136.0m
Flattening factor f 1/298.257 839 303

Earth’s angular velocity ωE 7 292 115.0 · 10−11 rad/s
Gravitational constant µ 3 986 004.4 · 108 m3/s2

Speed of light in a vacuum c 2.997 924 58 · 108 m/s
Second zonal harmonic coefficient J0

2 1 082 625.75 · 10−9

3.1.3.3 Galileo Reference Frame (GTRF)

A consortium called the Galileo Geodetic Service Provider (GGSP) con-
sisting of seven institutions under the leadership of GeoForschungsZentrum
Potsdam, was in charge of building a prototype for the development of the
GTRF and the establishment of a service with products and information
for potential users.

The initial coordinates for the reference stations were provided using
GPS observations, because the GTRF was already required by the time
when the first Galileo signals were emitted during the In-Orbit Validation
(IOV) phase. Subsequent GTRF versions will use both GPS and Galileo
observations. Weekly solutions will be performed for the long-term main-
tenance of the GTRF.

The GTRF must be compatible with the latest ITRF to within a preci-
sion level of 3 cm (2σ), since its maintenance is one of the main functions
of the GGSP, see [Gendt et al., 2011].

Connection to the ITRF is realised and validated by International GNSS
Service (IGS) stations,18 which are part of the ITRF, and especially by local
ties to other geodetic techniques like satellite laser ranging and Very Long
Baseline Interferometry (VLBI).

18The Galileo tracking stations (i.e. Galileo Sensor Stations (GSS)) form a sparse global
network. Therefore, it is necessary to increase the density of the network with additional
stations to get the highest possible precision and stability for the GTRF.
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is denoted as φ.

As is the case for GPS and Glonass, the Galileo satellites broadcast their
orbits in Galileo’s own GTRF system.

3.1.3.4 Beidou Reference Frame (CGCS2000)

The Beidou system adopts CGCS2000, which is a geocentric coordinate sys-
tem associated with Earth’s ellipsoid given in Table 3.4. CGCS2000 is re-
ferred to ITRF97 at the epoch of 2000.0. The reference frame of CGCS2000
currently consists of the national GPS control network 2000 and the na-
tional astro-geodetic network after combined adjustment with the GPS
network. The GNSS Continuously Operating Reference Stations (CORS)
network will be the main part of China’s geodetic infrastructure and a key
technique for maintaining CGCS2000 [Cheng and Dang, 2011].

Table 3.4: Ellipsoidal parameters of CGCS2000.

Ellipsoid
Semi-major axis of the ellipse a 6 378 137.0m
Flattening factor f 1/298.257 222 101

Earth’s angular velocity ωE 7 292 115.0 · 10−11 rad/s
Gravitational constant µ 3 986 004.418 · 108 m3/s2

Speed of light in a vacuum c 2.997 924 58 · 108 m/s

3.1.4 Cartesian and Ellipsoidal Coordinates

The (x, y, z) ECEF Cartesian coordinates of the above-mentioned terres-
trial frames can be expressed in the associated ellipsoid as (ϕ, λ, h) ellip-
soidal coordinates 19, where ϕ and λ are respectively the ellipsoidal latitude
and longitude and h the height above the ellipsoid. Figure 3.4 illustrates
the relation between Cartesian and ellipsoidal coordinates. The equations
associated with this transformation are given in Appendix B.

This coordinate transformation is implemented in programs car2geo.f
and geo2car.f. The input parameters are the ellipsoid semi-major axis a
and ellipsoid flattening f = 1− b/a.

19Also called geodetic or geographic coordinates.
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Figure 3.5: Global and local

geodetic datums and the geoid.
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3.1.5 Regional Datums and Map Projections

A datum consists of an ellipsoid relative to which the latitude and longitude
of points are defined, and a geoid defining the surface at zero height.20

Different organisations, countries or groups of countries have developed
their own datums for civil and military applications.

These ellipsoids are conventionally defined as fitting the geoid in the
region of interest, without being necessarily geocentric or having their axes
constrained to a given orientation. A valuable contribution of GPS was to
provide a Global Reference Frame, simplifying the mapping of Earth and
unifying the diverse datums [Misra and Enge, 2001]. Figure 3.5 illustrates
the concept of local and global datums, and their relation to the geoid.

The ellipsoidal coordinates of the datum must then be mapped to plane
coordinates using a proper projection to build a map. Different projections
have been defined (preserving areas, angles, distances, etc.), but all of them
introduce distortions due to the mapping of a curved surface to a plane (see,
for instance, [Hofmann-Wellenhof et al., 2008], chapter 8).

The local maps edited by the official organisations are referenced to a
given datum. The coordinates expressed in one datum can be transformed
into another with a seven-parameter transformation as explained in section
3.1.2.1 (i.e. a transformation in the space between two coordinate frames).
In this way, most of the commercial receivers incorporate the parameters
for several official datums to map the WGS-84 coordinates.

3.2 Satellite Orbits

Knowledge of the orbits and clocks of the satellites is fundamental for the
right positioning. Any error in the GNSS satellite coordinates or satellite
clock will affect the positioning accuracy. Information on orbital parameters
and clocks is transmitted in the navigation message. Precise ephemerides
and clocks are also provided by some organisations such as IGS.

In the following sections, the orbital elements are defined, the naviga-
tion message is introduced, and the algorithms for calculating the satellite
coordinates from the GNSS ephemerides are detailed.

20More precisely, the equipotential surface of Earth’s gravity field that on average
coincides with mean sea level in the open oceans. Note that, due to variations in gravity,
the geoid undulates significantly.

50



3. GNSS Time Reference, Coordinate Frames and Orbits

3.2.1 Keplerian Elements (Two-Body Problem)

According to Newtonian mechanics, the equation of motion of a mass m2

relative to another massm1, considering only the central attractive force be-
tween them, is defined by the second-order homogeneous differential equa-
tion

r̈ +
µ

r3
r = 0 (3.10)

where r is their relative position vector, µ = G(m1 + m2), and G is the
universal gravitational constant. In the case of motion of an artificial Earth
satellite, its mass can be neglected with respect to the mass of Earth (i.e.
µ ' GME).

Integration of this equation leads21 to the Keplerian orbit of the satellite

r(t) = r(t; a, e, i,Ω, ω, τ) (3.11)

defined by the following six orbital parameters22 (see Figs 3.6 and 3.7):

• Ω, the right ascension of ascending node, is the geocentric angle be-
tween the ascending node direction and the Aries point directions.
Note that the intersection of the equatorial plane and orbital plane
is called the nodal line. Its intersection with the unit sphere defines
two points: the ascending node, through which the satellite crosses
to the region of the positive Z-axis; and the descending node. Right
ascension (Ω) is measured in a counterclockwise sense when viewed
from the positive Z-axis.

• i, the inclination of the orbital plane, is the angle between the orbital
plane and the equator.

• ω, the argument of perigee, is the angle between the ascending node
and perigee directions, measured along the orbital plane. Perigee is
the point of closest approach of the satellite to Earth’s centre of mass.
The most distant position is apogee. Both are in the direction of the
orbital ellipse semi-major axis.

• a, the semi-major axis of the orbital ellipse, is the semi-major axis of
the ellipse defining the orbit.

• e, the numerical eccentricity of the orbit, is the eccentricity of the
orbital ellipse.

• T0, the perigee passing time, is the time of satellite passage through
the closest approach to Earth (perigee). The satellite’s orbital po-
sition can be obtained at a given moment t using any one of the
following ‘anomalies’, see Fig. 3.7:

– V (t), the true anomaly, is the geocentric angle between the
perigee direction and the satellite direction. The sum of the
true anomaly and the argument of perigee defines the argument

21The solution of this equation can be found in any textbook on celestial mechanics,
or satellite orbital motion. See, for instance, [Seeber, 1993] or [Xu, 2007].

22We restrict ourselves to elliptic orbits.
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Figure 3.6: GNSS satellite
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of latitude. Note that for a circular orbit (e = 0) the argument
of perigee and the true anomaly are undefined. The satellite’s
position, however, can be specified by the argument of latitude.

– E(t), the eccentric anomaly. A line that is normal to the major
axis and passes through the satellite, it defines a point when it
intersect a circle of radius a. Thus, the eccentric anomaly is
the angle (measured from the centre of the orbit) between the
perigee and such a point.

– M(t), the mean anomaly, is a mathematical abstraction relating
to mean angular motion.

The three anomalies are related by the formulae (see Fig. 3.7)

M(t) = n(t− T0)

E(t) = M(t) + e sinE(t)

V (t) = 2 arctan
[√

(1 + e)/(1− e) tanE(t)/2
]

n = 2π/P =
√
µ/a3

(3.12)
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where n denotes the mean angular velocity of the satellite, or mean motion,
with period of revolution P . Substituting the values for the semi-major axis
a = 26 560 km and gravitational constant µ = 3 986 004.418 · 108 m3/s2 (see
Table 3.2) into the last of the above equations (3.12), an orbital period of
12 sidereal hours is obtained for the GPS satellites.23

See Appendix C for the computation of the osculating orbital elements
from the satellite’s position and velocity, and vice versa. The equations are
implemented in programs rv2osc.f and osc2rv.f in Volume II.

3.2.2 Perturbed Motion

The two-body problem considered in the previous section is only a first ap-
proximation to the real case. In practice, an additional set of accelerations
or disturbing terms must be added to equation (3.10). They are mainly
due to the following:

1. Non-sphericity of Earth and non-homogeneous mass distribution: As
mentioned earlier, the shape of Earth can be approximated by an
ellipsoid, with an equatorial radius about 20 km larger than the polar
radius. On the other hand, the density of Earth is not uniform and
the gravitational force depends on the latitude and longitude as well
as the radial distance. Thus, Earth’s potential24 can be represented
by a spherical harmonic expansion [Hofmann-Wellenhof et al., 2008]
in the form

V =
µ

r

[
1−

∞∑
n=2

(aE
r

)n
Jn Pn(sinφ)

+
∞∑
n=2

n∑
m=1

(aE
r

)n
(Cnm cosmλ+ Snm sinmλ)Pnm(sinφ)

]
(3.13)

where aE is the semi-major axis of Earth, r is the geocentric distance
of the satellite, and φ and λ are its geocentric latitude and longitude.
The parameters Jn = −Cn0, Cnm, Snm denote the zonal (m = 0)
and tesseral (m 6= 0) coefficients of the harmonic development known
from a model of Earth. Pn and Pnm are Legendre polynomials and
the associated Legendre functions, respectively.

The even-degree zonal coefficients produce primary secular variations
of the orbital parameters, and the odd-degree zonal coefficients pro-
duce long-period perturbations. The tesseral coefficients produce
short-periodic perturbations.

The term with coefficient J2 in equation (3.13), the harmonic coeffi-
cient of second order and degree 0, essentially models the ellipsoidal
shape of Earth (with homogeneous density). It is smaller, by a fac-
tor of 104, than the acceleration due to a spherical Earth of uniform

23A sidereal day is 3m 56s shorter than a solar day (see section 3.1.1).
24In equation (3.10), the term −(µ/r3)r = ∇(µ/r) corresponds to the acceleration

from the potential produced by a spherical Earth with uniform density, see also equation
(3.15).
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density (i.e. ∇(µ/r) = −(µ/r3)r). On the other hand, this term is
approximately three orders of magnitude larger than the other coef-
ficients (see Table 3.7). Including only this term in the potential, the
previous expression becomes

V (r, φ, λ) =
µ

r

[
1 +

1

2

(aE
r

)2
J2(1− 3 sin2 φ)

]
(3.14)

The oblateness of Earth (J2) has two effects. First, a torque which
rotates the satellite’s orbit in the equatorial plane produces a nodal
regression dΩ/dt. This is a secular effect (i.e. cumulative time) which
depends upon the inclination of the orbit. It is zero for a polar
orbit and maximum for an equatorial orbit. Table 3.5 shows the
rate of change for the GPS, Beidou, Galileo and Glonass satellites.
See [Hofmann-Wellenhof et al., 2008], equations (3.48).

Table 3.5: Secular precession of GNSS ascending node produced by J2 . The following

values for orbital semi-major axis are assumed: aGPS = 26 560 km; aBeidouMEO = 27 906 km;

aGalileo = 29 600 km; aGlonass = 25 480 km. The excentricity is taken as e = 0 .

i 1 second 1 day 1 year

GPS 55.0◦ −4.5◦ · 10−7 −0.039◦ −14.16◦
Beidou 55.0◦ −3.8◦ · 10−7 −0.032◦ −11.91◦
Galileo 56.0◦ −3.0◦ · 10−7 −0.026◦ −9.44◦
Glonass 64.8◦ −3.8◦ · 10−7 −0.033◦ −12.15◦

The second effect of the non-central geopotential (J2) produces a
rotation of perigee dω/dt (i.e. a rotation of the major axis in the
orbital plane), see Table 3.6.

Table 3.6: Secular precession of GNSS perigee produced by J2 .

i 1 second 1 day 1 year

GPS 55.0◦ 2.5◦ · 10−7 0.022◦ 7.96◦

Beidou 55.0◦ 2.1◦ · 10−7 0.018◦ 6.69◦

Galileo 56.0◦ 1.5◦ · 10−7 0.013◦ 4.76◦

Glonass 64.8◦ −0.4◦ · 10−7 −0.004◦ −1.34◦

This second harmonic of the geopotential (J2) does not produce sec-
ular perturbations in the elements a, e and i. See the exercises of
laboratory session 3.1 in Volume II.

2. The presence of other celestial bodies – foremost, the Sun and Moon:
The gravitational field of the Sun and Moon act as perturbing forces
on the satellites, the Moon being the body that produces the largest
effects.25 These gravitational forces also produce tides that deform
the shape of Earth and affect its gravitational potential. Nevertheless,
these tidal effects produce accelerations on GNSS satellites of the

25Note that, although the Sun is much more massive than the Moon, it is also much
further away, and the gravitational effect is proportional to the inverse square of the
distance.

54



3. GNSS Time Reference, Coordinate Frames and Orbits

Sun

Earth

r̈
S

r̈
E

r̈
T

r̈
SP

r̈
Others

r̈
Planets

Satellite

r̈
M

Moon

Figure 3.8: Different

accelerations on the satellite

orbit: Earth, non-spherical and

non-homogeneous (r̈E ); celestial

bodies (r̈S , r̈M , r̈Planets); tidal

effects (r̈T ); solar radiation

pressure (r̈SP); other sources

(r̈Others).

order of 10−9 m/s2, which are three orders of magnitude lower than
the lunar and solar gravitational accelerations (Table 3.7). See also
the exercises of laboratory session 3.1.

3. Solar radiation pressure: This is produced by the photons impacting
the surface of the satellite and mainly depends on the reflective prop-
erties and the area-to-mass ratio of the satellite. It also depends on an
‘eclipse factor’, which is zero when the satellite is in Earth’s shadow.
The effect of solar radiation pressure on a satellite’s orbit is very
difficult to model, and some contribution is estimated as stochastic
acceleration parameters in the filter during estimation of the orbit.

Note that, although the gravitational effects of the Sun and Moon and
the non-gravitational solar radiation pressure perturbing the accelerations
appear very small, their accumulated effect can produce significant changes
in GNSS satellite orbits over a long period of time (Fig. 3.8). Table 3.7
shows the different magnitudes of perturbation and their effect on GPS
orbits.

Table 3.7: Different magnitudes of perturbation and their effects on GPS orbits (from

[Seeber, 1993]).

Perturbation
Acceleration Orbital effect

(m/s2) in 3 hours in 3 days

Central force 0.56
(as a reference)
J2 5 · 10−5 2 km 14 km
Rest of the harmonics 3 · 10−7 50–80m 100–1500m
Solar + Moon grav. 5 · 10−6 5–150m 1000–3000m
Tidal effects 1 · 10−9 – 0.5–1.0m
Solar rad. pressure 1 · 10−7 5–10m 100–800m
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3.2.3 GNSS Broadcast Orbits

As mentioned previously, the user’s receiver computes the satellite coor-
dinates from the information broadcast in the navigation messages by the
GNSS satellites.

Two different approaches are followed by the GPS/Galileo/Beidou and
Glonass satellites to account for satellite orbit perturbations. These ap-
proaches define what their messages contain.

In the case of the GPS, Galileo or Beidou satellites, the orbits are seen
as Keplerian in a first approximation, and the perturbations are treated as
temporal variations in the orbital elements (see comment below).

Indeed, an extended set of 16 quasi-Keplerian parameters (see Table 3.8)
is broadcast to the user in the navigation message and regularly updated.
This expanded set consists of the six orbital elements (a(t), e(t), i(t), Ω(t),
ω(t),M(t)) and three rate parameters to account for the linear changes with

time (
�
Ω,

�
i,∆n), three pairs of sinusoidal corrections (Cc, Cs) (i.e. Cc cos(2φ),

Cs sin(2φ)), and the reference ephemeris epoch toe (see section 3.3.1).

For Glonass satellites, the navigation message broadcasts the initial con-
ditions of position and velocity (r0,v0) and the vector components of the
lunar and solar gravitational acceleration perturbations (see Table 3.9) to
perform numerical integration of the orbit. The integration is based on
applying a fourth-order Runge–Kutta method to the equation

r̈ = ∇V + ksun moon (3.15)

where V is the potential defined by equation (3.14) and ksun moon are the
lunar–solar accelerations expressed in an inertial coordinate system (see
section 3.3.2). Note that, in the differential equation system (3.20) below,
the term expressions are given as in [GLONASS ICD, 2008].

Comment: At any epoch the state of motion of the satellite is given
by six parameters, namely the position and velocity vector components
(r,v), or the six Keplerian elements (a, e, i,Ω, ω, V ); therefore, a ‘point-
to-point’ transformation can be done between them. The orbital elements
are the natural representations of the orbit, because (in the absence of
perturbations) the motion along the orbit is described by a single parameter
(V (t)), see Fig. 3.7. In the presence of perturbing forces, time-varying
Keplerian elements defining an ellipse tangent to the orbit at any epoch
can be considered, that is an osculating orbit.26

The transformations between position and velocity, and the osculating
orbital elements, are given in Appendix C.

26From the Latin osculor (to kiss).
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3.3 Computation of GNSS Satellite Coordinates

The algorithms for computing the satellite coordinates from the broadcast
navigation messages of GPS, Glonass, Galileo and Beidou are provided as
follows.

3.3.1 Computation of GPS, Galileo and Beidou Coordinates

Table 3.8 lists the GPS, Galileo or Beidou broadcast ephemeris parameters
for computing the satellite coordinates at any observational epoch. These
parameters are renewed periodically (typically every two hours for GPS)
and must not be used after the prescribed time (about four hours), because
the extrapolation error grows exponentially beyond this validity period.

The algorithm given below is from [GPS/SPS-SS, 1995], table 2-15. The
Galileo and Beidou satellites follow the same scheme.

Table 3.8: GPS/Galileo/Beidou broadcast ephemeris and clock message parameters.

Parameter Explanation
toe Ephemerides reference epoch in seconds within the week√

a Square root of semi-major axis
e Eccentricity

Mo Mean anomaly at reference epoch
ω Argument of perigee
io Inclination at reference epoch
Ω0 Longitude of ascending node at the beginning of the week
∆n Mean motion difference
�
i Rate of inclination angle
�
Ω Rate of node’s right ascension

cuc , cus Latitude argument correction
crc , crs Orbital radius correction
cic , cis Inclination correction

a0 Satellite clock offset
a1 Satellite clock drift
a2 Satellite clock drift rate

In order to compute satellite coordinates from the navigation message,
the algorithm here must be used (see, for instance, program sub orbit.f in
Volume II). An accuracy of about 5 m (RMS) is achieved for GPS satellites
with S/A off and several tens of metres with S/A on27 (see the laboratory
exercises of session 3.2 in Volume II).

• Compute the time tk from the ephemerides reference epoch toe (t and
toe are expressed in seconds in the GPS week):

tk = t− toe

If tk > 302 400 s, subtract 604 800 s from tk. If tk < −302 400 s, add
604 800 s.

27Actually, S/A was mainly applied to the satellite clocks and, apparently, not so often
to the ephemerides.
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• Compute the mean anomaly for tk:

Mk = Mo +

( √
µ

√
a3

+ ∆n

)
tk

• Solve (iteratively) the Kepler equation for the eccentric anomaly Ek:

Mk = Ek − e sinEk

• Compute the true anomaly vk:

vk = arctan

(√
1− e2 sinEk
cosEk − e

)

• Compute the argument of latitude uk from the argument of perigee
ω, true anomaly vk and corrections cuc and cus:

uk = ω + vk + cuc cos 2 (ω + vk) + cus sin 2 (ω + vk)

• Compute the radial distance rk, considering corrections crc and crs:

rk = a (1− e cosEk) + crc cos 2 (ω + vk) + crs sin 2 (ω + vk)

• Compute the inclination ik of the orbital plane from the inclination
io at reference time toe, and corrections cic and cis:

ik = io+
�
i tk + cic cos 2 (ω + vk) + cis sin 2 (ω + vk)

• Compute the longitude of the ascending node λk (with respect to
Greenwich). This calculation uses the right ascension at the begin-
ning of the current week (Ωo), the correction from the apparent side-
real time variation in Greenwich between the beginning of the week
and reference time tk = t − toe, and the change in longitude of the
ascending node from the reference time toe:

λk = Ωo +

(
�
Ω −ωE

)
tk − ωEtoe

• Compute the coordinates in the TRS frame, applying three rotations
(around uk, ik and λk): Xk

Yk
Zk

 = R3 (−λk) R1 (−ik) R3 (−uk)

 rk
0

0


where R1 and R3 are the rotation matrices defined in equation (3.6).
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3.3.2 Computation of Glonass Satellite Coordinates

The Glonass satellite coordinates are computed according to the specifica-
tions in the Glonass-ICD document. An accuracy level of about 3 m can
be achieved using the algorithm provided by this ICD.

Table 3.9 lists the broadcast ephemeris parameters which are used to
compute the Glonass satellite coordinates. Essentially, the ephemerides
contain the initial conditions of position and velocity to perform numerical
integration of the Glonass orbit within the interval of measurement |t−te| <
15 min. The accelerations due to solar and lunar gravitational perturbations
are also given.

Table 3.9: Glonass broadcast ephemeris and clock message parameters.

Parameter Explanation
te Ephemerides reference epoch

x(te) Coordinate at te in PZ-90
y(te) Coordinate at te in PZ-90
z(te) Coordinate at te in PZ-90
vx (te) Velocity component at te in PZ-90
vy (te) Velocity component at te in PZ-90
vz (te) Velocity component at te in PZ-90
X ′′(te) Moon and Sun acceleration at te
Y ′′(te) Moon and Sun acceleration at te
Z ′′(te) Moon and Sun acceleration at te
τn(te) Satellite clock offset
γn(te) Satellite relative frequency offset

In order to compute PZ-90 Glonass satellite coordinates from the naviga-
tion message, the following algorithm must be used [GLONASS ICD, 1998]
(see program GLOeph2sp3.f and the laboratory exercises of session 3.3 in
Volume II).

3.3.2.1 Computation Equations and Algorithm

1. Coordinate transformation to an inertial reference frame: The initial
conditions (x(te), y(te), z(te), vx(te), vy(te), vz(te)) broadcast in the
Glonass navigation message, are in the ECEF Greenwich coordinate
system PZ-90. Therefore, before orbit integration they must be trans-
formed to an absolute (inertial) coordinate system using the following
expressions.28

Position:
xa(te) = x(te) cos(θGe)− y(te) sin(θGe)

ya(te) = x(te) sin(θGe) + y(te) cos(θGe)

za(te) = z(te)

(3.16)

28Note that, over small integration intervals, a simple rotation of the angle θGe around
the Z-axis is enough to perform this transformation. Nutation and precession of Earth
and polar motion are very slow processes and will not introduce significant deviations
over such short integration time intervals. See equation (3.2).
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Velocity:

vxa(te) = vx(te) cos(θGe)− vy(te) sin(θGe)− ωE ya(te)
vya(te) = vx(te) sin(θGe) + vy(te) cos(θGe) + ωE xa(te)

vza(te) = vz(te)

(3.17)

The (X ′′(te), Y
′′(te), Z

′′(te)) acceleration components broadcast in
the navigation message are the projections of lunisolar accelerations
to axes of the ECEF Greenwich coordinate system.29 These acceler-
ations must then be transformed to the inertial system by

(Jxam+ Jxas) = X ′′(te) cos(θGe)− Y ′′(te) sin(θGe)

(Jxam+ Jxas) = X ′′(te) sin(θGe) + Y ′′(te) cos(θGe)

(Jxam+ Jxas) = Z ′′(te)

(3.18)

where θGe is the sidereal time in the Greenwich meridian at epoch te,
to which the initial conditions are referred (see program sub sid.f

in Volume II), that is

θGe = θG0 + ωE(te − 3 h) (3.19)

and where:

ωE is Earth’s rotation rate (0.729 211 5 · 10−4 rad/s)

θG0 is the sidereal time (in radians) in Greenwich at midnight GMT
of a date for which the epoch te is specified, see equation (A.35).
Note that te is in Glonass time (i.e. UTC(SU)+3 h).

2. Numerical integration of the differential equations that describe the
motion of the satellites: According to the Glonass-ICD, recalculation
of ephemerides from epoch te to epoch ti within the interval of mea-
surement (|ti− te| < 15 min) is performed by numerical integration of
the differential equations (3.20) describing the motion of the satellites.
These equations are integrated in a direct absolute geocentric coor-
dinate system OXa, OYa, OZa, connected with the current equator
and vernal equinox, using the fourth-order Runge–Kutta technique
given next:

dxa/dt = vxa(t)

dya/dt = vya(t)

dza/dt = vza(t)

dvxa/dt = −µ̄ x̄a + 3
2C20 µ̄ x̄a ρ

2(1− 5z̄2
a) + Jxam+ Jxas

dvya/dt = −µ̄ ȳa + 3
2C20 µ̄ ȳa ρ

2(1− 5z̄2
a) + Jyam+ Jyas

dvza/dt = −µ̄ z̄a + 3
2C20 µ̄ z̄a ρ

2(3− 5z̄2
a) + Jzam+ Jzas

(3.20)

where

µ̄ = µ/r2, x̄a = xa/r, ȳa = ya/r, z̄a = xa/r

ρ̄ = aE/r, r =
√
x2
a + y2

a + z2
a

29These accelerations can also be computed using the analytical expressions given
in [GLONASS ICD, 1998], after fixing some typographical errors; see subroutines
sub Moon pos GLO.f and sub Sun pos GLO.f of program GLOeph2sp3.f in Volume II.

60



3. GNSS Time Reference, Coordinate Frames and Orbits

aE = 6 378.136 km Equatorial radius of Earth (PZ-90)

µ = 398 600.44 km3/s2 Gravitational constant (PZ-90)

C20 = −1082.63 · 10−6 Second zonal coefficient of spherical

harmonic expression

Note that, in the differential equations system (3.20), the term C20 =
−J2 = +

√
5C̄20 is used instead of J2 in equations (3.14) and (3.15)

to keep the same expressions as in the Glonass-ICD.

The right-hand side of the previous equation system (3.20) takes into
account the accelerations determined by the central body gravita-
tional constant µ, the second zonal coefficient C20 (which charac-
terises the polar flattening of Earth) and the accelerations due to
lunisolar gravitational perturbation. System (3.20) is implemented
in program sub orb deriv.f in Volume II.

Runge–Kutta integration algorithm:

• Given the following initial value problem
dy1/dt = f1(t, y1, . . . , yn)

...

dyn/dt = f1(t, y1, . . . , yn)

⇐⇒ Y′(t) = F(t,Y(t)) (3.21)

Y(t0) = [y1(t0), . . . , yn(t0)]T , Y′(t0) = [y′1(t0), . . . , y′n(t0)]T

it is desired to find Y(tf ) at some final time tf , or Y(tk) at some
discrete list of points tk (e.g. at tabulated intervals).

• The classical fourth-order Runge–Kutta method (RK4) is based
on the following algorithm:

K1 = F(tn,Yn)

K2 = F(tn + h/2,Yn + hK1/2)

K3 = F(tn + h/2,Yn + hK2/2)

K4 = F(tn + h,Yn + hK3)

Yn+1 = Yn +
h

6
(K1 + 2 K2 + 2 K3 + K4) +O(h5)

(3.22)

The method is initialised with the initial conditions Y(t0) and
Y′(t0). For the numerical integration of Glonass satellite or-
bits, the function F(t,Y) is given by equations (3.20). The
fourth-order Runge–Kutta algorithm is implemented in subrou-
tine sub GlonassephRK.f of program GLOeph2sp3.f in Volume II.

3. Coordinate transformation back to the PZ-90 reference system: The
coordinates (x(t), y(t), z(t)), obtained from the numerical integration
of the equations of motion, are transformed back to the Earth-fixed
reference frame PZ-90 by the following equations:

x(t) = xa(t) cos(θG) + ya(t) sin(θG)

y(t) = −xa(t) sin(θG) + ya(t) cos(θG)

z(t) = za(t)

(3.23)
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where θG is the sidereal time at the Greenwich meridian at time t,
that is

θG = θG0 + ωE(t− 3h) (3.24)

Note that t is in Glonass time, see equation (3.19).

It must be pointed out that the Glonass satellite coordinates are com-
puted in the PZ-90 or PZ-90.02 reference system30 instead of WGS-
84 where the GPS coordinates have been calculated. To bring the
PZ-90 coordinate system into coincidence with WGS-84 the transfor-
mation given by equation (3.8) must be applied (see section 3.1.3.2).
The transformation from PZ-90.02 to WGS-84 (actually ITRF2000)
is given by ∆x = −0.36 m, ∆y = +0.08 m, ∆z = +0.18 m, with no
rotation, that is equation (3.9).

An example of the software code implementing the full algorithm for
Glonass orbit computation, based on RK4, is provided in program
GLOeph2sp3.f.

3.3.3 Computation of Precise GNSS Satellite Coordinates

Precise orbits and clocks for GPS and Glonass satellites can be found on the
International GNSS Service (IGS) web server http://igscb.jpl.nasa.gov .31

These products are in the public domain and free of charge to all users.
They are available as American Standard Code for Information Interchange
(ASCII) files, providing precise orbits and clock files with a sampling rate
of 15 min, as well as precise clock files with a sample rate of 5 min and 30 s
in SP3 format.32

Table 3.10 summarises the different products available and their accu-
racy, latency and sampling rate. It must be pointed out that IGS has
adopted the ITRS as its reference system. Thus, IGS products are referred
to this system.

Some centres also provide GPS satellite clocks with a 5 s sampling rate,
like the files obtained from the Crustal Dynamics Data Information System
(CDDIS) site.33 Bear in mind that orbits and clock files must be consistent
(i.e. they must come from the same centre). Therefore, Centre for Orbit
Determination in Europe (CODE) clocks must be used with ‘CODE’ orbits,
and not with ‘JPL’ or ‘EMR’ products, for instance.

The ANTenna EXchange format (ANTEX) files, together with other
useful additional information on IGS antennas (see section 5.6), can be
found at http://www.epncb.oma.be/ftp/station/general .

The satellite coordinates between epochs can be computed by polyno-
mial interpolation. A 10th-order polynomial is enough for a centimetre
level of accuracy with 15 min data. Stable clocks with a sampling rate of
30 s or higher can be interpolated with a first-order polynomial to a few

30PZ-90.02 was implemented on 20 September 2007.
31Other useful sites with data products and information are the CDDIS

at ftp://cddis.gsfc.nasa.gov/gps and ftp://cddis.gsfc.nasa.gov/glonass, and
http://igscb.jpl.nasa.gov/components/compindex.html .

32See the format files description (SP3, ANTEX, RINEX, etc.) in the HTML files
associated with laboratory session 2.1 in Volume II.

33ftp://cddis.gsfc.nasa.gov/pub/gps/products/.
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Table 3.10: IGS orbits and clock products: RMS accuracy, latency and sampling (see

http://igscb.jpl.nasa.gov/components/prods.html).

Products Broadcast
Ultra-rapid

Rapid Final
Predicted Observed

(delay) (real time) (real time) (3–9 h) (17–41 h) (12–18 d)

Orbit GPS ∼100 cm ∼5 cm ∼3 cm ∼2.5cm ∼ 2.5 cm
(sampling) ( ∼2 h) (15min) (15min) (15min) (15min)
Glonass ∼5 cm

(sampling) (15min)
Clock GPS ∼5 ns ∼3 ns ∼150 ps ∼75 ps ∼75 ps
(sampling) (daily) (15min) (15min) (5min) (30 s)
Glonass ∼ TBD

(sampling) (15min)

centimetres of accuracy (see exercise 7b of laboratory session 3.2 in Vol-
ume II). Clocks with a lower sampling rate should not be interpolated,
because clocks evolve as random walk processes.

As an example of polynomial interpolation, the Lagrange method is
presented as follows. Given a table of values (xi, yi), i = 1, . . . , n, the
interpolated value y ' Pn(x) at a given x can be computed as

Pn(x) =
n∑
i=1

yi

∏
j 6=i (x− xj)∏
j 6=i (xi − xj)

= y1
x− x2

x1 − x2
· · · x− xn

x1 − xn
+ · · ·

+ yi
x− x1

xi − x1
· · · x− xi−1

xi − xi−1

x− xi+1

xi − xi+1
· · · x− xn

xi − xn
+ · · ·

+ yn
x− x1

xn − x1
· · · x− xn−1

xn − xn−1

(3.25)

3.3.4 Computation of Coordinates from Almanac Data

Almanac data allow computation of a raw estimate of the satellite coor-
dinates (1 – 2 km, 1σ error), which is needed for signal acquisition by the
receiver.

The almanac data consist of a reduced set of parameters (with respect to
broadcast ephemerides), as given in Table 3.11 for GPS satellites. Similar
data are broadcast for Galileo and Beidou.

Thus, the same equations as in section 3.3.1 can be used to compute the
coordinates from the almanac just by taking

∆n =
�
i = Cuc = Cus = Crc = Crs = Cic = Cis = 0 . (3.26)
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Table 3.11: GPS/Galileo/Beidou broadcast almanac parameters.

Parameter Explanation
ID Satellite identification number

WEEK Current week
ta Reference epoch in seconds within the week√
a Square root of semi-major axis

e Eccentricity
Mo Mean anomaly at reference epoch
ω Argument of perigee
δi Inclination offset relative to i = 54◦ (GPS) or i = 56◦ (Galileo)

or i = 54◦ (Beidou MEO) or i = 0◦ (Beidou GEO)
Ω0 Longitude of ascending node at beginning of week
�
Ω Rate of node’s right ascension
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4. GNSS Measurements and Data
Preprocessing

The basic GNSS observable is the travel time ∆T of the signal to propagate
from the phase centre of the satellite antenna (the emission time) to the
phase centre of the receiver antenna (the reception time). This value mul-
tiplied by the speed of light gives the apparent1 range R = c∆T between
them.

As mentioned in section 2.2, the GNSS signals contain ranging codes to
allow users to compute the travel time ∆T . Indeed, the receiver determines
∆T by correlating the received code (P ) from the satellite with a replica
of this code generated in the receiver, so this replica moves in time (∆T )
until the maximum correlation is obtained (see Fig. 4.1).

The measurement R = c∆T is what is known as the pseudorange. It
is called pseudorange, because it is an ‘apparent range’ between the satel-
lite and the receiver which does not match its geometric distance because
of, among other factors, synchronisation errors between receiver and satel-
lite clocks. Taking explicitly into account possible synchronisation errors
between such clocks, the travel time between transmission and reception
is obtained as the difference in time measured on two different clocks or
time scales: the satellite (tsat) and the receiver (trcv). Thus, considering

Signal from
the satellite

Code replica
generated in
the receiver

Correlation

T

Figure 4.1: Determination of the

signal travel time.

1It is called apparent, or pseudorange, to distinguish it from the true range, since
different effects cause them to differ.
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a reference time scale T (i.e. GNSS), the measured pseudorange (using the
code P for the frequency signal f) for the satellite and receiver may be
expressed as

RPf = c [trcv(T2)− tsat(T1)] (4.1)

where: c is the speed of light in a vacuum; trcv(T2) is the time of signal
reception, measured on the time scale given by the receiver clock; and
tsat(T1) is the time of signal transmission, measured on the time scale given
by the satellite clock.

The pseudorange RPf measurement obtained by the receiver using this
procedure includes, besides the geometric range ρ between the receiver and
the satellite and clock synchronisation errors, other terms due to signal
propagation through the atmosphere (ionosphere and troposphere), rela-
tivistic effects, instrumental delays (of satellite and receiver), multipath
and receiver noise (see Fig. 5.1 on page 96). Taking explicitly into account
all these terms, the previous equation can be rewritten as follows, where
RPf represents any GNSS code measurement at frequency f (from GPS,
Glonass, Galileo or Beidou):

RPf = ρ+c(dtrcv−dtsat)+Tr+αf STEC+KPf ,rcv−K
sat
Pf

+MPf+εPf (4.2)

Here:

• ρ is the geometric range between the satellite and receiver Antenna
Phase Centres (APCs) at emission and reception time, respectively
(section 5.1). Note: The APC is frequency dependent, but we ne-
glect this effect here for simplicity (see section 5.6 and Volume II,
Chapter 6).

• dtrcv and dtsat are the receiver and satellite clock offsets from the
GNSS time scale, including the relativistic satellite clock correction
(section 5.2).

• Tr is the tropospheric delay, which is non-dispersive (section 5.4.2).

• αf STEC is a frequency-dependent ionospheric delay term, where αf
is the conversion factor between the integrated electron density along
the ray path (STEC), and the signal delay at frequency f . That is,
αf = 40.3

f2 1016 m(signal delay at frequencyf)/TECU, where the frequency f is

in Hz and 1 TECU= 1016e−/m2. See equation (5.40), section 5.4.1.

• KPf ,rcv and KPf
sat are the receiver and satellite instrumental delays,

which are dependent on the code and frequency (sections 4.1 and 5.3).

• MPf represents the effect of multipath, also depending on the code
type and frequency, and εPf is the receiver noise (section 4.2).

Besides the code, the carrier phase itself is also used to obtain a mea-
sure of the apparent distance between satellite and receiver. These carrier
phase measurements are much more precise than the code measurements
(typically two orders of magnitude more precise), but they are ambiguous
by an unknown integer number of wavelengths (λN). Indeed, this ambigu-
ity changes arbitrarily every time the receiver loses the lock on the signal,
producing jumps or range discontinuities.
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The carrier phase measurements (ΦLf = λLf φLf ) can be modelled as

ΦLf = ρ+ c(dtrcv − dtsat) + Tr − αf STEC + kLf ,rcv − ksatLf
+

+ λLf NLf + λLf w +mLf + εLf
(4.3)

where this equation, besides the terms in equation (4.2), includes the wind-
up (λLf w) due to the circular polarisation of the electromagnetic signal2

and the integer ambiguity NLf (see section 5.5 and Fig. 4.2 below). The
terms kLf ,rcv and ksatLf

are frequency dependent and correspond to carrier

phase instrumental delays (see Fig. 6.4) associated with the receiver and
satellite, respectively. The mLf and εLf terms are the carrier phase multi-
path and noise, respectively.

Note that the ionospheric term has opposite signs for code and phase.
This means that the ionosphere produces an advance in the carrier phase
measurement equal to the delay on the code measurement (see section
5.4.1).

4.1 Combinations of GNSS Measurements

Starting from the basic observables as described previously, the following
combinations can be defined (where Ri and Φi, i = 1, 2, indicate measure-
ments in the frequencies f1 and f2 and P and L are omitted for simplicity):

• Ionosphere-free combination: This removes the first-order (up to
99.9%) ionospheric effect, which depends on the inverse square of
the frequency (αi ∝ 1/f2

i , see section 5.4.1)

ΦC =
f2

1 Φ1 − f2
2 Φ2

f2
1 − f2

2

, RC =
f2

1 R1 − f2
2 R2

f2
1 − f2

2

(4.4)

Satellite clocks are defined relative to the RC combination, see section
4.1.1.

• Geometry-free (or ionospheric) combination: This cancels the geo-
metric part of the measurement, leaving all the frequency-dependent
effects (i.e. ionospheric refraction, instrumental delays, wind-up). It
can be used to estimate the ionospheric electron content or to detect
cycle slips in the carrier phase, as well. Note the change in the order
of terms in ΦI and RI :

ΦI = Φ1 − Φ2 , RI = R2 −R1 (4.5)

• Wide-laning combinations: These combinations are used to create
a measurement with a significantly wide wavelength. This longer
wavelength is useful for carrier phase cycle-slip detection and fixing
ambiguities:

ΦW =
f1 Φ1 − f2 Φ2

f1 − f2
, RW =

f1 R1 − f2 R2

f1 − f2
(4.6)

2A rotation of 360◦of the receiver antenna, keeping its position fixed, would mean a
variation of one wavelength in the phase-obtained measurement of the apparent distance
between receiver and satellite (see section 5.5).
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• Narrow-laning combinations: These combinations create measure-
ments with a narrow wavelength. The measurement in this com-
bination has a lower noise than each separate component:

ΦN =
f1 Φ1 + f2 Φ2

f1 + f2
, RN =

f1 R1 + f2 R2

f1 + f2
(4.7)

ΦW and RN have the same ionospheric dependence, which is exploited
by the Melbourne–Wübbena (MW) combination (see equations (4.19)
and Fig. 4.10 below) to remove the ionospheric refraction.

4.1.1 Combining Pairs of Signals

Before applying the previous equations to the code and phase measure-
ments, some rearrangement of expressions (4.2) and (4.3) will be done in
order to refer the clocks to the code ionosphere-free combination of f1 and
f2 frequencies, RC12 (other pairs of frequencies could be used as well).
With this clock redefinition, the code instrumental delay will cancel in the
ionosphere-free combination. Moreover, such delays will appear in terms of
a differential code bias between both frequencies, always joining the iono-
spheric term, with a frequency-dependent coefficient (i.e. α(·) (I + K21)),
see equations (4.19).

4.1.1.1 Clock Redefinition and Differential Code Biases

By defining a new clock δt as

c δt = c dt+KC12 , where KC12 =
f2

1K1 − f2
2K2

f2
1 − f2

2

(4.8)

it is not difficult to find that

c dt+K1 = c δt+ α̃1(K2 −K1)

c dt+K2 = c δt+ α̃2(K2 −K1)
(4.9)

with

α̃i ≡
αi

α2 − α1
(i = 1, 2) and αi =

40.3

f2
i

1016 mdelay(signal Φfi
)
/TECU (4.10)

where dt, δt, K1, K2 stand for either the satellite or the receiver clocks,
and their instrumental delays.

The term K2 − K1 is the interfrequency bias between the code instru-
mental delays at frequencies f1 and f2, also called the Differential Code
Bias (DCB), which can be defined for both the receiver and satellite in-
strumental delays:

K21,rcv ≡ K2,rcv −K1,rcv, Ksat
21 ≡ Ksat

2 −Ksat
1 (4.11)

In the same way, and following previous notation, the combined instru-
mental delay (receiver and satellite) can be written as

Ksat
21,rcv = (K2,rcv −K1,rcv)− (Ksat

2 −Ksat
1 ) = K21,rcv −Ksat

21

= (K2,rcv −Ksat
2 )− (K1,rcv −Ksat

1 ) = Ksat
2,rcv −Ksat

1,rcv

(4.12)
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To simplify the notation, hereafter we will use

K21 ≡ Ksat
21,rcv = K21,rcv −Ksat

21 = Ksat
2,rcv −Ksat

1,rcv (4.13)

and
Ki ≡ Ki,rcv −Ksat

i

ki ≡ ki,rcv − ksati

(4.14)

for the code and carrier instrumental delays corresponding to frequency fi.

From expressions (4.11) to (4.14), it follows that whatever is applied to
the individual receiver or satellite’s DCB, or the combined one, it is always

K21 = K2 −K1 (4.15)

The DCBs of the satellites are broadcast in the GNSS navigation mes-
sages as the Total Group Delay (TGD), see equation (5.20). For instance,
TGD = −α̃1K

sat
21 for the GPS P1 code pseudorange measurements (i.e.

RPf1 ) is broadcast in the legacy GPS message for the P2–P1 code inter-
frequency bias (see section 2.2.1.1), and the DCBs between the codes on
frequencies E1, E5a and frequencies E1, E5b are broadcast in the Galileo
F/NAV and I/NAV messages, respectively (see section 2.2.3.1). IGS also
provides DCBs for the GPS satellites and station receivers. These products
match the Global Ionospheric Maps (GIM)3 and the precise satellite orbits
and clocks (see section 3.3.3), which always refer to the code ionosphere-free
combination RC12 of the GPS P1 and P2 codes.

4.1.1.2 Rewriting the Equations

Using the previous results, the code and carrier measurement equations can
be referred to the new clock δt defined in equation (4.8), in such a way that
the DCBs cancel in the ionosphere-free combination of code measurements.

Thus, taking I as the ionospheric delay (units of mdelay(Φ1−Φ2)
) in the

geometry-free combination,

I ≡ (α2 − α1) STEC =
40.3(f2

1 − f2
2 )

f2
1 f

2
2

1016 STEC (4.16)

and substituting expressions (4.9) into (4.2) and (4.3), it follows that

Ri = ρ+ c(δtrcv − δtsat) + Tr + α̃i(I +K21) +Mi + εi (4.17)

Φi = ρ+c(δtrcv−δtsat)+Tr−α̃i(I+K21)+bi+λiNi+λiw+mi+εi (4.18)

where bi = ki −Ki + 2α̃iK21 is a frequency-dependent bias4 (i = 1, 2).

Comment: It may be surprising to see the ‘code DCBs’ (i.e. K21)
included in the equation of carrier phase measurements joining the iono-
spheric term, but see the first remark on page 72.

3See [Hernández-Pajares, 2004] and ftp://cddis.gsfc.nasa.gov/gps/products/ionex.
Note that the IONEX DCBs are related to the TGD broadcast in the GPS message
(associated with the P1 code) by TGD → −α̃1 DCBIONEX. On the other hand, such
DCBs can be aligned to a different reference, and a global bias can appear. See exercise
3 in laboratory session 5.3 in Volume II.

4Note that, as with the code instrumental delay, the carrier phase bias b can be
split into two different terms associated with the receiver and the satellite. That is,
bi = bi,rcv − bsati .
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4.1.1.2.1 Combinations of Measurements Written in Closed Form

By replacing the expressions for Ri and Φi, i = 1, 2, in definitions (4.4)
to (4.7), the following expressions can be found (the derivations are left as
an exercise). Remark: the APC effect is neglected here for simplicity (see
section 5.6 and Volume II, exercise 2 in session 6.1).

Input measurements Ri and Φi (i = 1, 2):

Ri = ρ+ c(δtrcv − δtsat) + Tr + α̃i(I +K21) +Mi + εi
Φi = ρ+ c(δtrcv − δtsat) + Tr − α̃i(I +K21) +Bi + λiw +mi + εi

where the ambiguity Bi is given by

Bi = bi + λiNi, λi = c/fi, α̃1 = 1/(γ12 − 1), α̃2 = γ12α̃1 = 1 + α̃1,

γ12 = (f1/f2)2

with the bias bi a real number and Ni an integer ambiguity.

Note that K21 = K21,rcv −Ksat
21 , bi = bi,rcv − bsati .

Ionosphere-free combination:

RC = ρ+ c(δtrcv − δtsat) + Tr +MC + εC
ΦC = ρ+ c(δtrcv − δtsat) + Tr +BC + λNw +mC + εC

where the bias BC is given by

BC = bC + λN (N1 + (λW /λ2)NW )

Geometry-free combination:

RI = I +K21 +MI + εI
ΦI = I +K21 +BI + (λ1 − λ2)w +mI + εI

where the bias BI is given by

BI = bI + λ1N1 − λ2N2

Wide-lane (phase) and narrow-lane (code) combinations:

RN = ρ+ c(δtrcv − δtsat) + Tr + α̃W (I +K21) +MN + εN
ΦW = ρ+ c(δtrcv − δtsat) + Tr + α̃W (I +K21) +BW + mW + εW

where the bias BW is given by

BW = bW + λWNW

Other combinations involving code and phase measurements:

The Melbourne–Wübbena combination

ΦW −RN = bW + λWNW +MMW + εMW

The GRAPHIC (Group and Phase Ionospheric Calibration) combination
1
2(Ri + Φi) = ρ+ c(δtrcv − δtsat) + Tr + 1

2Bi + 1
2λiw +MG + εG

Definitions and relationships (where (·)X ≡ (·)X12
) :

NW ≡ N1 −N2,

λW ≡ c/(f1 − f2), λN ≡ c/(f1 + f2),

α̃W ≡
√
α̃1 α̃2 = f1f2/(f

2
1 − f2

2 ) =
√
γ12/(γ12 − 1), γ12 = (f1/f2)2,

bW ≡ (f1b1 − f2b2)/(f1 − f2), bC ≡ (f2
1 b1 − f2

2 b2)/(f2
1 − f2

2 ),

bI ≡ b1 − b2, bW − bC = α̃W bI ,

the same expressions for BX as for bX . (4.19)
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The effect of a jump in the integer ambiguities in terms of ∆N1, ∆N2

and NW is given next:

∆Φ
W

, ∆Φ
I
, ∆Φ

C
variations

∆Φ
W

= λW∆NW = λW (∆N1 −∆N2)

∆Φ
I

= λ1∆N1 − λ2∆N2 = (λ2 − λ1) ∆N1 + λ2 ∆NW

∆Φ
C

= λN

(
λW

λ1
∆N1 − λW

λ2
∆N2

)
= λN

(
∆N1 + λW

λ2
∆NW

)
(4.20)

The different wavelengths for the wide- and narrow-lane combinations
of frequencies in GPS, Glonass and Galileo, as well as the values for the
associated parameters, are given in Tables 4.1 and 4.2.

Table 4.1: Wide- and narrow-lane combinations of signals for different frequencies of GPS,

Glonass (only the channel k = 0 is given for G1 and G2 signals) and Galileo. The Galileo

E5 and E6 signals have not been included to simplify the table.

Signal
Frequency Wavelength Signals Wide lane Narrow lane

System (MHz) λi (m) combined λW (m) λN (m)

i fi λi = c/fi ij c/(fi − fj) c/(fi + fj)

GPS
L1 1575.420 λL1 = 0.190 L1,L2 0.862 0.107
L2 1227.600 λL2 = 0.244 L1,L5 0.751 0.109
L5 1176.450 λL5 = 0.255 L2,L5 5.861 0.125

Glonass
G1 1602.000 λG1 = 0.187 G1,G2 0.842 0.105
G2 1246.000 λG2 = 0.241 G1,G3 0.750 0.107
G3 1202.025 λG3 = 0.249 G2,G3 6.817 0.122

Galileo
E1 1575.420 λE1 = 0.190 E1,E5b 0.814 0.108
E5b 1207.140 λE5b = 0.248 E1,E5a 0.751 0.109
E5a 1176.450 λE5a = 0.255 E5b,E5a 9.768 0.126

Table 4.2: Values for the different parameters related to the combinations of GPS, Glonass

and Galileo measurements shown in Table 4.1.

System
Frequency fi αi =

40.3
f 2
i

1016

i , j γij = (fi/fj)2

(MHz) (mdelay /TECU)

GPS
fL1 = 154× 10.23 αL1 = 0.1624 L1,L2 (77/60)2

fL2 = 120× 10.23 αL2 = 0.2674 L1,L5 (154/115)2

fL5 = 115× 10.23 αL5 = 0.2912 L2,L5 (24/23)2

Glonass
fG1 = 2848× 9

16 αG1 = 0.1570 G1,G2 (9/7)2

fG2 = 2848× 7
16 αG2 = 0.2596 – –

fG3 = 117.5× 10.23 αG3 = 0.2789 – –

Galileo
fE1 = 154× 10.23 αE1 = 0.1624 E1,E5b (77/59)2

fE5b = 118× 10.23 αE5b = 0.2766 E1,E5a (154/115)2

fE5a = 115× 10.23 αE5a = 0.2912 E5b,E5a (118/115)2
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Remarks on the previous equations:

• The code DCBs have been included in the equations of carrier phase
measurements,5 joining the ionospheric term to provide closed ex-
pressions for the different combinations of measurements, namely
equations (4.4) to (4.7), where the ionospheric term always joins
the DCB as ‘I + K21’, with a frequency-dependent scale factor, see
equations (4.19). In this way, combinations removing the ionosphere,
such as MW, will also be free from DCBs. Note that, as the car-
rier measurement contains an unknown bias B(·), it can be rede-
fined without loss of generality to include such DCBs. That is,
α̃(·)(I +K21) +B(·) ≡ α̃(·)I + B(·).

• Although, for simplicity, the previous equations (4.19) are written in
terms of two signals at frequencies f1 and f2, they are valid for any
pair of frequencies fk and fm (see Table 4.1).

• Note that the wind-up term does not appear in the wide-lane carrier
phase combination. This is because the signals are subtracted in
cycles, see equation (4.3). That is, ΦW = (f1Φ1 − f2Φ2)/(f1 − f2) =
c(φ1−φ2)/(f1 − f2), and both signals are affected by the same fraction
of cycle by the wind-up.

• The GRAPHIC combination [Yunck, 1993] provides an ionosphere-
free single-frequency measurement with reduced noise (half the code
noise, see Fig. 4.3 below), but contains the unknown ambiguity of the
carrier phase. This combination is used, for example, for GPS single-
frequency orbit determination for Low Earth Orbit (LEO) satellites;
see, for instance, [Montenbruck and Ramos-Bosch, 2007].

4.1.1.3 Additional Comments on the Equations

A brief discussion on some issues related to the previous equations is pro-
vided to clarify their content and meaning. Several of these issues will be
discussed in more detail in subsequent chapters.

4.1.1.3.1 Code-Based Positioning

The GNSS satellites broadcast in their navigation messages ephemeris and
satellite clock information linked to the code ionosphere-free combination
(RPC ). In this way, dual-frequency users can navigate the ionosphere-free
combination without needing either ionospheric corrections or DCBs. In
the case of the legacy GPS navigation message, such DCBs correspond to
the P1–P2 codes (see Table 2.2).

For single-frequency users, the navigation message provides the parame-
ters of an ionospheric model together with the associated TGDs, see section
5.3.

5Bear in mind that the clock has been redefined to include this ‘code interfrequency
bias’, and the clock is common for both code and carrier measurements.
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4.1.1.3.2 Carrier-Phase-Based Positioning

Due to the (satellite and receiver) clock redefinition (from expression (4.8)),
the ionosphere-free combination of code measurements is free of DCBs (ei-
ther for the satellite or receivers), but this is not the case for the carrier
phase measurements, which still contain the real bias bC = bC,rec + bsatC

because the clocks have been referred to the ionosphere-free combination
of ‘code measurements’.

Nevertheless, this carrier phase bias bC is not a problem for carrier-
phase-based positioning techniques like Precise Point Positioning (PPP)
presented in section 6.2, because it is assimilated into the unknown am-
biguity when it is estimated by the Kalman filter as a real number (i.e.
‘floating’ the ambiguities). This does not affect the ambiguity fixing in
differential positioning techniques like Real-Time Kinematics (RTK), be-
cause any remaining bias cancels out when forming the double differences
between satellites and receivers ∇∆, keeping only the integer part of the
ambiguities (∇∆Bi = ∇∆Ni, i = 1, 2), see section 6.3.1. Nevertheless,
this bias (the fractional part of the ambiguities) must be considered if the
ambiguities are tried to be fixed in undifferenced mode, i.e. undifferenced
ambiguity fixing, see section 6.3.2.

4.1.1.3.3 Ionosphere and DCB Estimation

The redefinition of the satellite and receiver clocks allowed expressions
(4.19) to be arranged in such a way that the DCBs join the ionospheric
refraction in all the equations, with the same frequency-dependent factor.

The carrier phase bias BI in the geometry-free combination can be esti-
mated directly from the geometry-free combination of code measurements.
Afterwards, the sum I + K21 can be computed. Because this estimate is
based on the code measurements, its accuracy will depend on the level of
code noise and multipath. Nevertheless, geodesy can dramatically improve
the accuracy of such estimates, due to the relationship between the am-
biguities BI , BW and BC . Indeed, BC can be accurately estimated from
geodetic positioning and BW can be easily fixed using the MW combina-
tion. Hence, BI can be computed from

BW −BC = α̃WBI (4.21)

Once the sum I + K21 is computed, the DCBs (K21) can be decorrelated
from the ionospheric refraction (I) using a geometric description of the
ionosphere (i.e. describing the satellite–receiver ray ionospheric sounding),
due to the motion of the satellite along its path. In this way, the accuracy
of the ionosphere and DCB determinations mostly relies on the geometric
model used to describe the ionosphere (i.e. the one-layer model or two-layer
voxel model [HJS and Colombo, 1999]).
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4.1.2 Combining Trios of Signals

The previous expressions (4.19) have been referred to the new clock δt de-
fined by equation (4.8), which is linked to the ionosphere-free combination
of code measurements in the frequencies f1 and f2. As a result of this clock
redefinition, the instrumental delay appears as the DCB (K21), which can-
cels out when forming the ionosphere-free combination of codes in both
frequencies.

Next, the code and carrier measurements of a third frequency will be
rearranged and expressed in terms of this clock δt (relative to RC12).

4.1.2.1 Referring Measurements at a Third Frequency to the New
Clock

When considering a third frequency f3, a new instrumental delay K3

appears, which leads to the following expressions when referring equations
(4.2) and (4.3) to the clock δt:

R3 = ρ+ c (δtrcv − δtsat) + T + α̃3(I + K̃31) + α̃1K21 +M3 + ε3

Φ3 = ρ+ c(δtrcv − δtsat) + T − α̃3(I + K̃31)− α̃1K21+

+ B3 + λ3w +m3 + ε3

(4.22)

where the ambiguity B3 is given by

B3 = b3 + λ3N3 , λ3 = c/f3 , α3 = 40.3/f2
3 , α̃3 = α3/(α2 − α1) ,

K̃31 = (1/α̃3)(K3 −K1) , b3 = k3 −K1 + α̃3 K̃31 + 2α̃1K21 , N ∈ Z
Note that, on comparing expression (4.22) with those of Φi and Ri, at

the top of equations (4.19), the K21 DCB appears among the K̃31 ones.
This is because the clock is referred to the ionosphere-free combination of
codes at frequencies f1 and f2.

4.1.2.2 New Combinations Involving Trios of Signals

New combinations of measurements can be built from three-frequency sig-
nals, as follows. Some examples are analysed in the exercises of session 4.2
in Volume-II.

• The geometry-free and first-order ionosphere-free combination: This
combination would allow measurement of the second-order ionospheric
effect (see section 5.4.1) with well-calibrated antenna phase centres.
Nevertheless, the measurement noise is of the same order as or higher
than this effect.

• The first-order and second-order ionosphere-free combination: This
combination would allow removal of the ionosphere up to the mil-
limetre level, but, again, the measurement noise is greatly amplified.
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4.2 Measurement Features and Noise

In the previous sections we described the GNSS receiver measurements and
their combinations. Now we are going to analyse the main features of these
data, their measurement noise, and how it affects the combinations.

Two main features of code and carrier phase measurements are depicted
in Fig. 4.2. While the code measurements (in green) show a noisy but
continuous pattern, the carrier phase track (in blue) is thinner and broken
by sudden jumps. The magnitude of such jumps is always unknown; they
happen every time the receiver recovers carrier phase lock after a loss of
signal. This behaviour can be summarised in the following two concepts:

• Code measurements are noisy but unambiguous.

• Carrier measurements are precise but ambiguous.

The previous example allows us to introduce the distinction between two
different concepts that are often synonymous: namely, precision and accu-
racy.

Precision refers to the dispersion of a measurement around a mean value
(not necessarily the true one). Accuracy refers to the closeness of the
measurement to the true value. In this way, note that a measurement like
the carrier phase can be very precise (i.e. at a very low noise level), but
completely wrong due to the unknown bias, which can reach thousands of
kilometres (in the figure the carrier phase has been shifted to fit into the
plot frame).

The code and carrier phase measurement noise depends on different
factors like the signal power, the method used for the analog-to-digital con-
version, the correlation process, the design of the antenna, etc. These errors
are independent of each receiver and each signal, and cannot be removed
by differential techniques (differences between receivers or satellites) or by
combinations of measurements.
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Figure 4.2: GPS code and carrier

phase measurement features.

The geometry-free combinations

of code (RP2 − RP1 ), in green,

and carrier (ΦL1 − ΦL2 ), in blue,

are plotted as function of time

for a given satellite.
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Figure 4.3: Comparison of code

pseudorange noise for the

original GPS R1 and R2 raw code

measurements and their main

combinations (see captions).

The geometry and/or the

dispersive delays have been

removed by a combination of

carrier phases (indicated within

the brackets). The plots are

shifted to remove carrier

ambiguity. The approximate

expression of σ noise is given

above each plot. Note:

~α1 = 1/(γ − 1), ~α2 = 1 + ~α1 and

γ = (77/60)2 ' 1.65.
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Figure 4.3 shows a comparison of code pseudorange noise for the original
GPS P1 and P2 code raw measurements and their combinations. The data
were collected on 16 December 2008, in Barcelona, Spain, with an Ashtec
Z-XII receiver and an AT2775-42W antenna.

In the plots of Fig. 4.3, the geometry and dispersive delays have been re-
moved by a combination of carriers (indicated within the brackets at the top
of each plot) in order to allow better visualisation of the code measurement
noise. The approximate expression of σ noise for each combination (see
section 4.1), assuming uncorrelated signal noise6, is also given under each

6The expressions are based on the following results: given two independent random
variables X, Y , and two constants a, b, then σaX+bY =

√
a2σ2

X + b2σ2
Y .
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plot. Notice the agreement between the noise shown in the different plots
and the theoretical values derived from this simple approach, assuming the
same noise in both frequencies. Many other examples with Galileo, GPS
and Glonass signals can be found in the laboratory exercises of sessions 4.2
and 4.3 in Volume II.

The two main sources of receiver measurement error are presented below:
namely, receiver noise and multipath.

4.2.1 Receiver Noise

The receiver code noise is a white-noise-like error and can be smoothed
using a low-pass filter.

This error affects both the code and carrier measurements, but at differ-
ent magnitudes. The accuracy of pseudorange measurements is about 1%
of the wavelength (‘chip’), or better. This means, for instance, noise with a
maximum value of 3 m for the GPS civil C1 code (i.e. C/A code) and about
30 cm for the protected P codes (see Table 2.1). However, when smoothing
the code with the carrier phase, the C1 code noise can be reduced to about
50 cm.

The carrier phase noise is at the level of few millimetres (about 1% of
the carrier phase wavelength).

4.2.2 Multipath

The interference by multipath is generated when a signal arrives, by differ-
ent ways, at the antenna (see Fig. 4.4). Its principal cause is the closeness
of the antenna to the reflecting structures, and it is important when the
signal comes from a satellite with low elevation. This error is different for
different frequencies. It affects the phase measurements, as well as the code
measurements. In the case of the code, it can reach a theoretical value of
1.5 times the wavelength (‘chip’). This means, for instance, that multipath
in the GPS C1 code can reach up to 450 m (see Table 2.1), although higher
values than 15 m are difficult to observe. Typically, it is less than 2 or 3 m.
In the case of the carrier, its theoretical maximum value is a quarter of the
wavelength. This means about 5 cm for the GPS L1 or L2 signals, but it is
typically less than 1 cm.

Antenna

Direct signal

Reflected
signal

Ground

Antenna
image Excess path length

Figure 4.4: Difference in the

optical path between the direct

signal and the reflected signal.
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Figure 4.5: Effect of code

multipath on GPS signals. The

plot at the top shows the

‘butterfly effect’ due to the

larger multipath at the satellite’s

rising and setting (i.e. due to the

low-elevation rays). The plot at

the bottom shows the

repeatability of multipath

signatures with the geometry:

the code minus phase signal

combination R1 − Φ1 is plotted

for a given satellite over three

consecutive sidereal days. The

drift is due to the ionospheric

refraction. See exercises 3 to 7

of session 4.1 in Volume II.

The multipath error can be minimised by improving antenna directiv-
ity: that is, by attenuating the signal coming from certain low-elevation
directions, and moving the antenna away from reflecting objects.

The effect of code multipath for low-elevation rays is depicted in the top
plot of Fig. 4.5, where the geometry-free combinations of code (R2−R1) and
carrier (Φ1 − Φ2) measurements are plotted for a satellite–receiver track.
The larger noise at the edges is due to the low-elevation rays at the rising
and setting of the satellite. Notice that the carrier phase multipath (less
than 1 cm) cannot be seen due to the scale of the figure and its 2 m divisions.

The geometric nature of multipath is illustrated in the bottom plot
of Fig. 4.5, where the code minus phase combination R1 − Φ1 is plotted
for a given satellite over three consecutive days. The measurements were
collected with a static GPS receiver and, therefore, the geometry of the
satellite–receiver rays repeats every sidereal day.7 Notice in this plot how
the multipath signatures overlap after aligning the plots to the first day
(i.e. by shifting 236 and 2× 236 s, the second- and third-day plots, respec-
tively) to account for the difference between the sidereal and solar times.
The global drift is due to the ionospheric refraction 2I1, see equation (4.26)
(data set collected on 28–30 September 1998, in Barcelona, Spain, with the
single-frequency Lassen-SK8, Trimble receiver).

7That is, every 24 h minus 236 s of GPS time (see sections 2.1.1.1 and 3.1.1).78
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4.2.3 Carrier Smoothing of Code Pseudoranges

The noisy (but unambiguous) code pseudorange measurements can be
smoothed with the precise (but ambiguous) carrier phase measurements.
A simple algorithm (the Hatch filter) is given as follows.

Let R(s; k) and Φ(s; k) be the code and carrier measurements of a given
satellite s at k-th epoch. Then, the smoothed code R̂(s; k) can be computed
as

R̂(s; k) =
1

n
R(s; k) +

n− 1

n

[
R̂(s; k − 1) + (Φ(s; k)− Φ(s; k − 1))

]
(4.23)

The algorithm is initialised with R̂(s; 1) = R(s; 1), where n = k when
k < N and n = N when k ≥ N .

This algorithm must be initialised every time that a carrier phase cycle
slip occurs.

The algorithm can be interpreted as a real-time alignment of the carrier
phase with the code measurement. That is,

R̂(k) =
1

n
R(k) +

n− 1

n

[
R̂(k − 1) + (Φ(k)− Φ(k − 1))

]
= Φ(k) +

n− 1

n

(
R̂(k − 1)− Φ(k − 1)

)
+

1

n
(R(k)− Φ(k))

= Φ(k) +
n− 1

n
〈R− Φ〉(k−1) +

1

n
(R(k)− Φ(k))

= Φ(k) + 〈R− Φ〉(k)

(4.24)

where the mean bias8 〈R− Φ〉 between the code and carrier phase is esti-
mated in real time and used to align the carrier phase with the code.

4.2.3.1 Code–Carrier Divergence Effect: Single-Frequency
Smoothing

The time-varying ionosphere induces a bias in the single-frequency smoothed
code when it is averaged in the smoothing filter. This effect is analysed as
follows.

The single-frequency code (R1) and carrier (Φ1) measurements given by
the first two equations of (4.19) can be written in a simplified form as

R1 = r + I1 + ε1

Φ1 = r − I1 +B1 + ε1
(4.25)

where r includes all non-dispersive terms such as geometric range, satel-
lite and receiver clock offset and tropospheric delay. I1 represents the
frequency-dependent terms as the ionospheric and instrumental delays. B1

is the carrier phase ambiguity term, which is constant along continuous

8The mean value of a set of measurements {x1, . . . , xn} can be computed recursively
as 〈x〉k = (1/k)xk + [(k − 1)/k]〈x〉k−1. Equation (4.24) is a variant of the previous
expression and provides an estimate of the moving average over a window of N samples.
Note that, when k ≥ N , the weighting factors 1/N and (N − 1)/N are used instead of
1/k and (k − 1)/k.
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carrier phase arcs. ε1 and ε1 account for the code and carrier thermal noise
and multipath.

Since the ionospheric term has opposite sign in code and carrier mea-
surements, it does not cancel in the R–Φ combination, but, on the contrary,
its effect is twofold. That is,9

R1 − Φ1 = 2I1 −B1 + ε1 (4.26)

The term 2I1 is often called code–carrier divergence, because it results
from the fact that the ionosphere affects code and carrier in different ways,
that is, the ionosphere delays the code and advances the carrier by the same
amount.

Substituting equations (4.25) and (4.26) into (4.24) results in

R̂1(k) = Φ1(k) + 〈R1 − Φ1〉(k) = r(k)− I1(k)+B1 + 〈2I1 −B1〉(k) (4.27)

Since the carrier ambiguity term B1 is a constant bias and the average 〈·〉
is a linear operator, we can assume that B1 ≈ 〈B1〉(k) and then they cancel
in the previous equation (4.27), which can be rewritten as

R̂1(k) = Φ1(k) + 〈R1 − Φ1〉(k) = r(k) + I1(k) + 2
(
〈I1〉(k) − I1(k)

)︸ ︷︷ ︸
biasI

(4.28)

(where the ionosphere is a time-varying term). If the ionosphere were con-
stant, the averaged value 〈I1〉(k) would coincide with the instantaneous
value I1(k) and, hence, the bias biasI would cancel. However, the time-
varying ionosphere will result in a bias that depends on the magnitude of
the temporal gradient.

That is, the time-varying ionosphere produces a bias in the single-
frequency carrier-smoothed code due to the code–carrier divergence effect,
in such a way that the first equation of (4.25) becomes, for the smoothed
code R̂1,

R̂1 = r + I1 + biasI + ν1 (4.29)

where ν1 is the noise term after the filter smoothing. The magnitude of
this bias is a function of the smoothing window N .

In order to assess such an effect, let us assume a simple model where
STEC varies linearly over time:

I1(t) = I01+
�
I1 t (4.30)

In exercise 17 of session 4.1 in Volume II, it is shown that, assuming equa-
tion (4.30), the bias in the smoothed code, in the steady state, is given
by

biasI = 2
(
〈I1〉(k) − I1(k)

)
= −2τ

�
I1 (4.31)

where τ is the filter smoothing time constant (τ = N∆t in equation (4.23)).

Figures 4.6 and 4.7 show two examples of the error induced by the
ionosphere in the single-frequency smoothed code (see exercises 15 and 16
of session 4.1 in Volume II). Figure 4.6 corresponds to the Halloween storm
(on 30 October 2003) with high ionospheric temporal gradients producing
up to 8 m of error. Figure 4.7 is for a quiet scenario and compares the
performance using different smoothing time constants.

9Where the carrier term ε1 is negligible compared to the code noise and multipath ε1.
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Figure 4.6: Effect of 100 s

smoothing during the Halloween

storm. The top plot shows the

C1–carrier smoothing using

equation (4.26), in red

(single-frequency smoother), and

using equation (4.32), in black

(divergence-free smoother). The

raw measurements are shown in

green. STEC is depicted in the

bottom plot. As it is shown, the

larger temporal ionospheric

gradients lead to larger

code–carrier divergence-induced

error in the single-frequency

smoothed solution, which

reaches up to about 8 m in this

example. See exercise 16 of

session 4.1 in Volume II.

4.2.3.1.1 Divergence-Free Smoother

With dual frequency measurements, a combination of carriers with the same
ionospheric delay as the code (the same sign) can be generated (Φ1DF ).
Thus, neglecting the carrier noise and multipath ε1 and ε2 against the code
ε1,

R1 − Φ1DF = B12 + ε1

Φ1DF = Φ1 + 2α̃1(Φ1 − Φ2)
(4.32)

Using this new carrier measurement Φ1DF in the Hatch filter (either
equation 4.23 or 4.24) instead of Φ1, a smoothed code is obtained, free
from the code–carrier ionospheric divergence effect, and having the same
ionospheric delay as the original unsmoothed code R1:

R̂1 = r + I1 + ν12 (4.33)

where ν12 is the noise after the filter smoothing. This smoothed code is
called divergence-free carrier-smoothed code.

Comment: This smoothed code is not biased by the temporal gradients
of the ionosphere (unlike the single-frequency smoother), being the same
ionospheric delay as in the original raw code (i.e. I1). Nevertheless, as it
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is still affected by the ionosphere, its spatial decorrelation10 must be taken
into account in differential positioning.

Figures 4.6 and 4.7 compare the results of single-frequency and diver-
gence-free smoothers. The sinusoidal-like oscillations are due to the code
multipath. These oscillations are smoothed by increasing the time constant.
This works well with the divergence-free smoother, but a larger ionospheric
bias is introduced in the case of the single-frequency smoothing.

4.2.3.1.2 Ionosphere-Free Smoother

The previous combination of equation (4.32) uses two-frequency carriers
(Φ1,Φ2) but only a single-frequency code (R1).

Using both code and carrier dual-frequency measurements, it is possi-
ble to remove the frequency-dependent effects11 using the code and carrier
ionosphere-free combinations (RC , ΦC ), see equations (4.4). Thus, equa-
tions (4.25) become

RC = r + εC
ΦC = r +BC + εC

(4.34)

Now, using the previous ionosphere-free combinations of code and carrier,
equation (4.26) becomes

RC − ΦC = BC + εC (4.35)

Applying this combination as the input in the Hatch filter (either equa-
tion 4.23 or 4.24), a smoothed solution completely free of the (first-order)
ionosphere is computed:

R̂C = r + νC (4.36)

where νC is the noise after filter smoothing. This smoothed code is called
the ionosphere-free carrier-smoothed code.

The right side of Fig. 4.7 shows the ionosphere-free carrier-smoothed
solution computed using the same smoothing time constants as with the
C1 code. Notice the larger noise in this combination regarding the C1 code,
as well as the unbiased smoothed solution (see also Fig. 4.3).

Comment: This dual-frequency smoothing is based on the ionosphere-
free combination of measurements, and therefore it is unaffected by either
the spatial or the temporal ionospheric gradients, but has the disadvantage
that the noise is amplified by a factor of 3 (using the legacy GPS signals).

Note that the left-hand plots of Fig. 4.3 are generated in exercise 15 of
session 4.1 in Volume II.

10The spatial decorrelation of the ionosphere is typically at a level of 1 to 4 mm/km,
but in extreme conditions can reach up to 400 mm/km. Such spatial gradients moving
at 0.75 km/s are being considered in the Ionospheric Threat Model, which results in
potential temporal gradients at a given location of about 300 mm/s [Konno, 2007], which
can lead to a large bias in the single-frequency smoother.

11That is, the first-order ionosphere, which accounts for up to 99.9% of the ionospheric
effect, and the interfrequency bias, see equations (4.19).
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Figure 4.7: Carrier-smoothed

codes with different time filter

lengths: 1 h (first row), 6 min

(second row), 1 min (third row).

Left-hand plots show the Single

Frequency (SF) smoothing using

equation (4.26) in red and the

Divergence Free (DFree)

smoothing using equation (4.32)

in black; right-hand plots show

the Ionosphere-Free (IFree)

smoothing using equation (4.35).

The red curves (left-hand plots)

accumulate the bias due to the

divergence of the ionosphere.

The larger noise in the

right-hand plots is due to the

ionosphere-free combination of

codes (which amplifies the noise

by a factor of 3). The

unsmoothed measurements in

green correspond to R1 (left)

and RC (right) of Fig. 4.3 (zoom

to [35000:40000] s). Note that

in this example R1 is the GPS C1

code measurement and RC is the

IFree combination of GPS codes.

See exercise 15 of session 4.1 in

Volume II.

Figure 4.8: The ionospheric

delay variation associated with

Figure 4.7 computed from

Φ1 − Φ2 (shifted) in metres of

L1 signal delay.
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4.3 Carrier Phase Cycle-Slip Detection

As already mentioned, receiver losses of lock cause discontinuities in the
phase measurements (cycle slips) that are seen as jumps of integer numbers
of wavelengths λ (i.e. the integer ambiguity N changes by an arbitrary
integer value).

Different heuristic methods are used for cycle-slip detection, operating
over undifferenced, single-differenced or double-differenced measurements
between pairs of satellites and receivers.

The methods presented in this section12 are oriented towards single-
receiver positioning, and thus do not require any differencing of data be-
tween receivers, being suitable for implementation in real time. Moreover,
they are based on using only combinations of measurements at different
frequencies, or just one frequency measurement. That is, they do not need
any geometric delay modelling.

4.3.1 Examples of Multifrequency Cycle-Slip Detectors

With two-frequency signals (or multifrequency signals in general) it is pos-
sible to build combinations of measurements to enhance the reliability of
cycle-slip detection. The target is to remove the geometry, which is the
largest varying effect,13 the clocks and the other non-dispersive delays, as
well as ionospheric delays.

Two types of examples of detectors will be presented in this section: de-
tectors based on carrier phase measurements only; and detectors based on
code and carrier phase data. In the first type, carrier phase measurements
of signals at two different frequencies are subtracted in order to remove the
geometry and all non-dispersive effects. This provides a very precise test
signal (multipath and noise less than 1 cm), although it is affected by the
ionospheric refraction. However, this effect varies as a smooth function and
can be modelled by a low-degree polynomial fit. Nevertheless, high iono-
spheric activity conditions can degrade the performance of this detector,
mainly with low sampling rate data.

As the cycle slips can occur in each of the signals independently, two
independent combinations must be use to ensure that all possible jumps are
taken into account. In this way, the simultaneous use of two independent
detectors protects against those situations where the combination of ∆N1

and ∆N2 cycle slips would produce inappreciable jumps in the geometry-
free combination.14

The second type of detector is based on the MW combination of code
and carrier phase measurements [Blewitt, 1990]. This combination can-
cels not only the non-dispersive effects, but also the ionospheric refraction.
Nevertheless, the resulting test signal (i.e. MW combination) is affected by

12Most are examples based on our own algorithms presently in use.
13The range ρ varies up to hundreds of metres in 1 s.
14For instance, with GPS signals, (∆N1,∆N2) = (9, 7) or (68, 53) . . . , produces jumps

of few millimetres in the geometry-free combination. In particular, no jump happens
when (∆N1,∆N2) = (77, 60), but this event produces a jump of 17λW ' 15 m in the
wide-lane combination.
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Figure 4.9: Effect of one-cycle
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phase signal on the

ionosphere-free combination.
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day; the vertical axis is in metres.

the code multipath, which can reach up to several metres. The impact of
this noise is partially reduced by the increased ambiguity spacing of the
wide-lane combination of carrier phases, on the one hand, and the noise
reduction due to the narrow-lane combination of code measurements, on
the other hand (both of which are involved in the MW combination). Nev-
ertheless, and in spite of these benefits, the performance is worse than in
the carrier-phase-based detector and it is used as a secondary test.

4.3.1.1 Detector Based on Carrier Phase Data: The Geometry-Free
Combination

With two-frequency signals it is possible to obtain the carrier phase
geometry-free combination, in order to remove the geometry, including
clocks, and all non-dispersive effects in the signal. As commented pre-
viously, in non-disturbed conditions, this very precise (i.e. with very low-
noise) test signal performs as a smooth function, driven by the ionospheric
refraction, with very few changes between close epochs. Indeed, although,
for instance, the jump produced by a simultaneous one-cycle slip in both
signal components is smaller in this combination than in the original sig-
nals,15 it can provide reliable detection, even for small jumps.

The easiest way to build a cycle-slip detector is to consider the differences
in time of consecutive samples (see Fig. 4.9). A refinement of this procedure
is the use of nth-order differences to take advantage of the jump amplitude
enlargement produced by the differencing process (see Table 4.3).

This approach allows us to make a reasonable enough detector for many
applications. Nevertheless, it must be taken into account that, as the jumps
are enlarged, also the signal noise (i.e. signal instabilities) is amplified,
which can lead to false detections in some scenarios (for instance, with low
signal-to-noise ratios, scintillation, etc.).

One way to mitigate the impact of these effects is to use a low-order
polynomial fit, reducing the test signal noise. This concept is the basis of
the detector example presented next.

15For GPS signals, this jump is λ2 − λ1 = 5.4 cm, which is about 3–4 times shorter
than λ1 = 19.0 cm or λ2 = 24.4 cm (see Table 4.1).
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Table 4.3: Computational scheme of differences: a jump in amplitude ε happens at

time t4 and its effect is propagated and amplified by the n-th order differences (from

[Hofmann-Wellenhof et al., 2008]).

ti y(ti ) ∆y ∆2y ∆3y ∆4y
t1 0

0
t2 0 0

0 ε

t3 0 ε −3ε
ε −2ε

t4 ε −ε 3ε
0 ε

t5 ε 0 −ε
0 0

t6 ε 0
0

t7 ε

Description of Algorithm: The detection is based on fitting a second-
degree polynomial over a sliding window of NI samples (e.g. NI = 10). The
predicted value from this polynomial is compared with the observed value
to detect the cycle slip. As the geometry-free combination is affected by the
ionospheric refraction, a sampling-rate-dependent threshold is considered.

Input data: Geometry-free combination of carrier phase measurements

ΦI(s; k) = Φ1(s; k)− Φ2(s; k) (4.37)

Output: [satellite, time, cycle-slip flag].

For each epoch (k)

For each tracked satellite (s)

• Declare cycle slip when data gap greater than tol∆t.
16

• Fit a second-degree polynomial P (s;x) to the previous val-
ues (after the last cycle slip)17 [ΦI(s; k−NI), . . . ,ΦI(s; k−1)].

• Compare the measured ΦI(s; k) and the predicted value
P (s; k) at epoch k. If the discrepancy exceeds a given
threshold, then declare cycle slip. That is,
if |ΦI(s; k)− P (s; k)| > threshold, then cycle slip.

• Reset algorithm after cycle slip.

End

End

An example of this algorithm implementation can be found in program

PreProcess.c in Volume II.

16For instance, 60 s.
17A simpler approach is to construct a Lagrange interpolating polynomial (see section

3.3.3) with the last three values. For NI = 3, this would be equivalent to considering the
third-order differences in time of consecutive samples (i.e. ∆3P2(t) ≡ 0).
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Comments: As mentioned previously, the relative variation between
two consecutive epochs t1 and t2 depends on the elapsed time interval be-
tween them (i.e. ∆t = t2−t1), due to the variation in ionospheric refraction.
Thus, a ∆t-dependent threshold is recommended to account for the mea-
surement sampling rate. For instance, threshold = a0 − a1 exp(−∆t/T0)
can be used.

Note that a0 is the maximum threshold. On the other hand, taking
for example a1 = a0/2 and T0 = 60 s, then the minimum threshold is
a0[1− exp((−∆t/T0)/2)], which corresponds to about a0/2 for 1 s sampling
rate and about 2a0/3 for 30 s sampling rate data. In this way, for instance,
if a0 is set as a0 = 3

2(λ2 − λ1), the minimum detectable jump between two
contiguous measurements will be 3

4(λ2 − λ1) or λ2 − λ1 for a 1 s or 30 s
sampling rate, respectively.18

4.3.1.2 Detector Based on Code and Carrier Phase Data: The MW
Combination

The MW combination provides a noisy estimate of the wide-lane ambiguity
BW , according to the equation

BW = ΦW −RN = λWNW + bW + ε (4.38)

where NW = N1 −N2 is the integer wide-lane ambiguity, bW accounts for
the satellite and receiver instrumental delays and ε is the measurement
noise, including carrier phase and code multipath (see equations (4.19)).

This combination has a double benefit. On the one hand, the wide-lane
combination has a larger wavelength λW = c/(f1 − f2) than each signal
individually (see Table 4.1), which leads to an enlargement of the ambiguity
spacing.19 On the other hand, the measurement noise is reduced by the
narrow-lane combination of code measurements,20 reducing the dispersion
of values around the true bias.

A simple algorithm, suitable for running in real time, is presented as
follows (see [Blewitt, 1990]).21

Description of Algorithm: The detection is based on the real-time
computation of mean and sigma values of the measurement test data BW .
A cycle slip is declared when a measurement differs from the mean bias
value over a predefined number of standard deviations (SBW ), that is the
threshold.

Input data: MW combination of BW of code–carrier phase.

Output: [satellite, time, cycle-slip flag].

18Note that, from equation (4.20), λ2 − λ1 is the jump produced on the geometry-free
combination ΦI when a jump of one cycle occurs simultaneously in both carriers. This
jump, for instance for the GPS L1 and L2 signals, is λ2 − λ1 = 5.4 cm (see Table 4.1).

19The noisy measurements are concentrated around discrete levels of separated mul-
tiples of λW units (see Fig. 4.10, right). That is, the jumps are integer numbers of
λW .

20Namely, σ2
W = (f2

1σ
2
1 + f2

2σ
2
2)/(f1 + f2)2 ' 1/2σ2

1 (see Fig. 4.3).
21This algorithm was designed to work with the wide-lane combination (λW ' 75–

85 cm), see Table 4.1. Of course, its performance will dramatically improve if the extra-
wide-lane combination (λEW ' 6–10 m) is used, see Table 4.1.
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For each epoch (k)

For each tracked satellite (s)

• Declare cycle slip when data gap greater than tol∆t (e.g.
60 s).

• Compare the measurement BW (s; k) at epoch k with the
mean bias mBW (s; k−1) computed from the previous values.
If the discrepancy is over a threshold of Kfactor×SBW (e.g.
Kfactor = 6), declare cycle slip. That is,
if |BW (s; k)−mBW (s; k − 1)| > Kfactor × SBW (s; k − 1),
then cycle slip.

• Update the mean and sigma values according to the equa-
tions.

mBW
(s; k) =

k − 1

k
mBW

(s; k − 1) +
1

k
BW (s; k)

S2
BW

(s; k) =
k − 1

k
S2
BW

(s; k − 1) +
1

k
(BW (s; k)−mBW

(s; k − 1))
2

(4.39)

Note: SBW can be initialised with an a priori S0 = λW /2.

• Reset algorithm after cycle slip.

End

End

An example of this algorithm implementation can be found in program
PreProcess.c in Volume II.

Comments:

• The calculation of the mean is exact (over the k = 1, . . . , n, . . .
samples), while the computation of sigma is a good approximation
(O(1/k2)). The equations (4.42) can be used as well.

• A lower, or lower and upper, limit for the threshold can be set in
order to protect the test from unrealistic noise estimates of SBW .

• The mean bias estimate mBW can be greatly affected by strong code
multipath at the beginning of the data arch (due to low-elevation
rising satellites), but as the number of averaged samples increases,
this estimate becomes more stable and robust. This improvement
of mBW with the number of processed samples does not necessarily
benefit SBW as an estimate of the data noise to define the detection
threshold. Indeed, as the number of samples increases, the value of
S2
BW

is frozen, becoming more insensitive to the measurement noise
variations. A solution to this problem is to compute a moving sigma
(only for SBW , not mBW ) over the last N -sample window as in section
4.3.2.

The effect of the ambiguity space widening produced by the MW combi-
nation is shown in Fig. 4.10 and compared with the single-frequency phase
minus code combination (see section 4.3.2)22 as a reference. As in Fig. 4.9,

22This combination (Φ–R) cancels all non-dispersive effects (geometry, clocks, etc.) so
only the ionospheric refraction remains (among the instrumental delays), producing the
drift seen in the figure.
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Figure 4.10: Effect of one-cycle

jump in the GPS L1 signal in the

Φ–R (left) and MW (right)

combination (raw measurements

without smoothing). Vertical

axes are in cycles of λ1 ' 19 cm

(left) and λW' 86 cm (right).

a jump of one cycle is introduced in the Φ1 carrier phase measurement at
time 5000 s. This jump cannot be identified from the Φ–R combination
shown in the left plot of Fig. 4.10, due to the receiver code noise and multi-
path, and to the ionospheric drift. On the contrary, it is clearly seen in the
MW combination plot shown on the right of the figure, which has a lower
relative noise and is not affected by the ionospheric refraction.

Figure 4.10 (right) shows a nice example of cycle-slip detection with the
MW combination, where the jump is well defined.23 Unfortunately, this is
not the case on many occasions, because the detection threshold is ‘fussier’
due to the code receiver noise and multipath. This noise can be smoothed
by filter averaging (i.e. by computing the mean bias BW ), but small jumps
can still escape from the detector in the first epochs following a filter reset.

Large code multipath or, even worse, undetected cycle slips at the begin-
ning of the filter convergence can propagate forward large errors that can
lead to large SBW values, increasing the detection threshold (Kfactor×SBW )
and hence causing misdetections. On the other hand, use of small Kfactor

values to increase the detector’s sensibility can lead to a higher fault-
detection probability.

4.3.1.3 Cycle-Slip Detection with Three-Frequency Signals

The reliability of cycle-slip detection can be significantly improved with
three-frequency signals. Indeed, on the one hand the extra-wide-lane com-
bination provides a wavelength of several metres that can dramatically
improve the sensibility of this code-based detector, overcoming most of the
problems mentioned previously in section 4.3.1.2. On the other hand, two
independent geometry-free combinations are possible to generate, which
allow us to relay the detection in carrier phase data detectors as in those
described in section 4.3.1.1.

Thus, a simple scheme can be based on the following elements: (1) two
carrier-phase-based detectors for two independent geometry-free combina-
tions; and (2) an MW detector using the extra-wide-lane combination.

23The measurements shown in this figure are unsmoothed. They were collected under
A/S off conditions (IGS station CASA, California, USA, 18 October 1995).
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4.3.2 Examples of Single-Frequency Cycle-Slip Detectors

The examples of single-frequency detectors presented next are based only
on data measurements of a single receiver and do not use any geometric
delay model. They are simple algorithms, suitable for running in real time,
but with a worse performance than the two-frequency detectors of previous
sections. Other algorithms using geometric modelling or single or double
differences between satellites, or satellites and receivers, can improve the
detection threshold and the reliability, but their study is beyond the scope
of this book.

The non-dispersive delays (geometry, clocks, troposphere, etc.) are
cancelled when forming the code pseudorange and carrier phase combi-
nation for a given satellite and receiver measurement, that is Φ − R =
λN − 2I +K + ε, where the ionospheric refraction I is affected by a factor
of 2. The terms N , K and ε indicate the ambiguity, instrumental delays
and measurement noise, respectively. Two example algorithms will be pre-
sented in this section based on the following considerations:

• The ionospheric term I varies slowly with time, with small changes
between consecutive epochs (typically less than 1–2 cm in 30 s).

• The measurement noise ε can reach up to several cycles, but it can be
smoothed by a polynomial fit of the data measurements over a mov-
ing window (Example 1); or a smoothed prediction can be computed
by averaging the samples as in the detector of the previous section
(Example 2).

Example 1: Description of Algorithm.

The detection is based on fitting an nth-degree polynomial over a sliding
window of N samples (e.g. N = 200 at 1 Hz). The residuals (predicted −
observed) are compared to detect the carrier phase cycle slips.24 As the
(geometry-free) combination used, equation (4.40), is two times the iono-
spheric refraction, a sampling-rate-dependent threshold can also be consid-
ered.

Input data: Code minus phase combination of single-frequency data

d(s; k) = Φ(s; k)−R(s; k) (4.40)

Output: [satellite, time, cycle-slip flag].

24This approach is inspired by the algorithms developed by [Blewitt, 1990] for the
geometry-free combination of two-frequency signals. Note that a similar scheme is applied
here for the code and phase combination of a single-frequency signal.
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For each epoch (k)

For each tracked satellite (s):

• Declare cycle slip when data gap greater than tol∆t.
25

• If no data gap larger than tol∆t, then:

• Update an array with the previous N values (after the last
cycle slip) [d(s; k −N),. . . , d(s; k − 1)].

• Fit an nth-degree polynomial P (s;x) to the previous
epochs.26

• Declare cycle slip when

|d(s; k)− P (s; k)| > Threshold.

• Reset algorithm after cycle slip.

End

End

Example 2: Description of Algorithm.

The detection is based on computing the mean and sigma values of the code
pseudorange and carrier phase (Φ–R) differences over a sliding window of
N samples (e.g. N = 100 with 1 Hz data). A cycle slip is declared when
a measurement differs from the mean bias value over a predefined threshold.

Input data: Code pseudorange (R) and carrier phase (Φ) measurements.

Output: [satellite, time, cycle-slip flag].

For each epoch (k)

For each tracked satellite (s):

• Declare cycle slip when data gap greater than tol∆t.
27

• If no data gap larger than tol∆t, then:

• Update an array with the last N differences of

d(s; k) = Φ(s; k)−R(s; k) (4.41)

That is, [d(s; k −N), . . . , d(s; k − 1)].

• Compute the mean and sigma discrepancy over the previous
N epochs (after the last cycle slip) [k −N, . . . , k − 1]:

md(s; k − 1) =
1

N

N∑
i=1

d(s; k − i)

md2(s; k − 1) =
1

N

N∑
i=1

d2(s; k − i)

Sd(s; k − 1) =
√
md2(s; k − 1)−m2

d(s; k − 1)

(4.42)

25For instance, 60 s.
26Typically, n = 2 or 3 can be used.
27For instance, 15 s with 1 Hz data.
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• Compare the difference at epoch k with the mean value of
differences computed over the previous N -sample window.
If the value is over a threshold = nT × Sd (e.g. nT = 6),
declare cycle slip.28

That is,
if |d(s; k)−md(s; k−1)| > nT × Sd(s; k − 1), then cycle slip.

• Reset algorithm after cycle slip.

End

End

An example of this algorithm implementation can be found in program

PreProcess.c in Volume II.

Comments:

• This algorithm can be seen as a particular case of Example 1, using
a zero-degree polynomial fit.

• This detector is affected by the pseudorange noise and multipath,
as well as the divergence of the ionosphere. Thus, higher sampling
rates improve detection performance, but the shortest jumps can still
escape from this detector. On the other hand, a minimum number of
samples are needed for filter initialisation, in order to ensure a reliable
value of Sd for the detection threshold.

• To avoid unrealistic estimates of sigma during the first iterations of
the filter, the following weighted average with an initial value of S2

0

can be used (see Fig. 4.11 for an example of implementation perfor-
mance):

S̃2
d(s;n) =

n− 1

n
S2
d(s;n) +

1

n
S2

0 (4.43)

Figure 4.11: Fault cycle-slip

detection on the GPS L1 signal.

A multipath drift, after a quite

stable period (i.e. with small

sigma), produces a fault

detection and the detector is

reinitialised. The measured and

predicted differences are

compared with the confidence

threshold (computed with the

sliding window algorithm, using

equation (4.42) combined with

(4.43)). See also the plots of

exercises 9 to 11 of session A.1

in Volume II.
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28The mean bias between code and phase computed from the ‘previous N samples’ is
taken as the prediction of the actual difference at epoch k (i.e. d̂(s; k) ≡ md(s; k − 1))
with confidence nT × Sd(s; k − 1).
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where S0 is a predefined initial value for sigma (e.g. S0 = 1 m). An-
other easier approach is to fix a lower, or a lower and an upper, bound
for the sigma threshold. That is, to take threshold = nT × Sd, with
thmin ≤ threshold ≤ thmax.

• The Hatch filter can be used instead of the finite window of equations
(4.42) to compute the mean values md, md2 in order to simplify the
code:

md(s;n) =
a− 1

a
md(s;n− 1) +

1

a
d(s;n)

md2(s;n) =
a− 1

a
md2(s;n− 1) +

1

a
d2(s;n)

(4.44)

where a = n when n < N and a = N when n ≥ N . These equa-
tions allow computation of a sequential estimate of the mean and
sigma values, but this filter has infinite memory, propagating forward
the divergence of the ionospheric refraction.29 Nevertheless, such an
accumulated effect, although biasing the ambiguity estimate, should
not affect the cycle-slip detection, because it varies smoothly and the
detector looks for large jumps.

Additional Comments. Differences in the Time Detector: As in
the previous section, a detector based on the nth-order time differences of
carrier phase Φ measurements between consecutive epochs could be consid-
ered (see section 4.3.1.1). Nevertheless, it must be taken into account that
such differences are affected by changes in geometric range and in clocks.30

In spite of this, most of the geometric range variation is cancelled from ∆3,
because it varies as a smooth function. Thence, this detector is mainly
affected by receiver clock instabilities and high ionospheric fluctuations, as
well.

In the case of the receiver clock effects, these can be removed by consid-
ering single differences of measurements between pairs of satellites in view,
although this will enlarge the noise. The ionospheric effects can not be com-
pletely removed with such differences, but they should not be a problem,
except in highly disturbed scenarios.

29On the contrary, equations (4.42) provide an estimate based on a (sliding) window,
with a finite number of points.

30In the previous case in section 4.3.1.1, the geometry-free combination was used,
cancelling all the non-dispersive effects (geometric range, clocks, etc.).
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5. Measurement Modelling

As explained in the previous chapter, the code and carrier phase mea-
surements contain several additional time delays associated with the signal
propagation or with the clocks, among the geometric range between the
satellite and receiver antenna phase centres. These delays are common in
code and carrier measurements, except for the wind-up (see section 5.5) and
the ambiguities that affect only the carrier measurements, and for a sign
in the ionospheric refraction, delaying the code and advancing the carrier
measurements, see section 5.4.1.

Figure 5.1 shows the layout of the different time delay terms in the
pseudorange to illustrate the contents of the measurements.

Recalling equations (4.19), the measurements can be modelled by1

Ri = ρ+ c(δtrcv − δtsat) + Tr + α̃i(I +K21) +Mi + εi (i = 1, 2)

Φi = ρ+ c(δtrcv − δtsat) + Tr − α̃i I + bi + λiNi + λiw +mi + εi
(5.1)

where the satellite clock offset δtsat includes the relativistic clock correction
and range ρ the relativistic path correction.

The aim of this chapter is to provide the background for the measure-
ment modelling of the Standard and Precise Point Positioning. In applying
this modelling, the user’s receiver would correct each measurement from
the known delay.

The residuals between the measured and predicted code or carrier pseu-
doranges contain the receiver position error and clock offset, together with
mismodelling and measurement noise errors. These residuals, hereafter
called prefit residuals, are the input data for the navigation equations stud-
ied in the next chapter. Such equations consist of a linear system whose
solution by least squares or Kalman filtering allows us to decorrelate (i.e.
separate) the different error components from the prefit residuals and then
to determine the receiver coordinates and clock. The more accurate the
measurement modelling, the better the decorrelation of errors and the more
accurate the coordinates obtained.

1Where the term ‘−α̃iK21’ added in equations (4.19) to the carrier measurements (to
have closed expressions for the combinations of measurements) is assimilated here into
the unknown bias ‘bi + λiNi’, for simplicity. Nevertheless, such closed expressions are
especially useful when working with combinations of pairs of frequencies, as in section
6.3.2, to simplify the relationships between equations and parameters (see also sections
4.1.1.2 and 4.1.1.3).
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Figure 5.1: Pseudorange

measurement contents.
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5.1 Geometric Range Modelling

The geometric range ρsatrcv is the Euclidean distance2 between the satellite
and receiver antenna phase centre coordinates at transmission and reception
time, respectively:

ρsatrcv=
∥∥rsat − rrcv

∥∥=
√

(xsat − xrcv)2 + (ysat − yrcv)2 + (zsat − zrcv)2

(5.2)

The algorithms for computing the transmission time from the measurement
time, the satellite coordinates as well as the geometric range pre-fitting are
as follows.

5.1.1 Satellite Coordinates

As the measurements are linked to the signal reception time, which is given
by the receiver time tags (i.e. in the receiver clock), an algorithm is needed
to obtain the signal emission time in the GNSS (GPS, Glonass, Galileo,
etc.) time scale. Two algorithms will be presented next in section 5.1.1.1 for
computing the transmission time, one of which is based on the pseudorange
measurement and the other on a pure geometric approach.

Once the transmission time is obtained, the satellite coordinates can be
computed.3 This computation can be done in either an inertial or a rotating
ECEF coordinate frame. Obviously, an ECEF frame is more suitable for
providing the user’s position on Earth and, therefore, this system is used
as a reference frame for the satellite and receiver coordinates.

2The relativistic path range correction adds an extra amount (less than 2 cm) to this
Euclidean range, see section 5.1.2.

3The satellite’s speed is about 5 km/s and the travel time about 0.1 s; thus satellites
move hundreds of metres during signal flight time, see Fig. 5.2.
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The ECEF frame is taken at reception time because it is a common
reference for all measurements.4 Then, Earth’s rotation during the signal
travel time must be considered to account for the ECEF rotation during
this elapsed time. An algorithm for this computation is given in section
5.1.1.2.

Finally, besides the satellite coordinates (at transmission time), the re-
ceiver coordinates (at reception time) are also needed to compute the geo-
metric range (from equation (5.2)). In fact, the receiver coordinates are the
unknowns to be determined in the navigation problem and can seem quite
contradictory in needing some ‘knowledge of them to estimate themselves’
(i.e. to compute the receiver’s position). As explained in section 6.1, a sim-
ple approach to solve the navigation problem is to initialise the positioning
algorithm with an approximation of the user’s position.5 In this approach,
the unknowns to be estimated are the deviations of such approximate user
locations from the true coordinates, or, essentially the same, the correction
to apply in order to obtain more accurate receiver coordinates.

Different options can be considered to obtain an initial value for the
receiver coordinates, that is a user location a priori, to initialise the nav-
igation algorithm. The simplest way would be just to use Earth’s centre
coordinates (i.e. (0, 0, 0)) or an arbitrary point on Earth’s surface. After a
few iterations, the solution will converge to the actual position of the re-
ceiver. A different approach that does not require any ‘a priori’ knowledge
of the receiver’s location is the Bancroft method presented in Appendix D.

4Note that reception time is common for all satellites, but not transmission time, which
depends on the satellite–receiver range and, therefore, is different for each satellite.

5These approximate coordinates (x0, y0, z0) or ‘a priories’ are used to linearise the
geometric range in the neighbourhood of this point (i.e. ρ = ρ0 + ∇ρ|r=r0

· ∆r, where

∆r = [∆x,∆y,∆z]T ). This is done in order to build a linear model for estimating the
position, since the deviations from this nominal value of ∆x = x − x0, ∆y = y − y0,
∆z = z− z0 are the unknowns to be estimated, together with the receiver clock offset δt
and other parameters as well (see Chapter 6).
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5.1.1.1 Computation of the Emission Time

Two different algorithms for computing the satellite transmission time from
the receiver measurement time are presented as follows. The first of them
is based on using the pseudorange measurement, which is a link between
the receiver time tags (i.e. the reception time in the receiver clock) and the
satellite transmission time (in the satellite clock). The second one is a pure
geometric algorithm, which does not require any receiver measurement; it
only needs the satellite coordinates and an approximate position of the
receiver.

A Pseudorange-Based Algorithm

The emission time can be directly obtained from the reception time by
taking into account that the pseudorange R is a direct measurement of
the time difference between both epochs, each one being measured in the
corresponding clock:

R = c
(
trcv[reception]− tsat[emission]

)
(5.3)

So the signal emission time, measured with the satellite clock (tsat), is given
by

tsat[emission] = trcv[reception]−∆t (5.4)

where

∆t = R/c (5.5)

Thus, if δtsat is the satellite clock offset regarding the GNSS (GPS,
Glonass, Galileo, etc.) time scale (see section 5.2), the transmission time
T [emission] in this system time scale can be computed from the receiver
measurement time tags (trcv) as

T [emission] = tsat[emission]− δtsat = trcv[reception]−R/c− δtsat (5.6)

This equation has the advantage of providing the signal emission time di-
rectly, without iterative calculations, although it does need pseudorange
measurements in order to connect both epochs.

The accuracy in determining T [emission] is very high, and essentially
depends on the δtsat error. For instance, in the case of the GPS system it is
less than 10 or 100 ns with S/A off and S/A on, respectively. This allows us
to calculate the satellite coordinates with an error of less than one- tenth
of a millimetre in both cases.6

This algorithm is implemented in the gLAB software provided with this
book.

6The speed of the GPS, Glonass or Galileo satellites is a few kilometres per second.
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A Purely Geometric Algorithm

The previous algorithm (equation (5.4)) provides the signal emission time
tied to the satellite clock (tsat). The next algorithm ties this epoch to the
receiver clock (trcv):

trcv[emission] = trcv[reception]−∆t (5.7)

where ∆t is now calculated by iteration assuming that an approximate
receptor position r0rcv is known (it converges very quickly).

The algorithm is based on the following steps:

1. Calculate the position rsat of the satellite at signal reception time
trcv.

2. Calculate the geometric distance between the satellite coordinates
obtained previously and the receiver’s position7 and, from it, calculate
the signal travel time between both points:

∆t =

∥∥rsat − r0rcv

∥∥
c

(5.8)

3. Calculate the satellite’s position at the time t = trcv −∆t =⇒ rsat.

4. Compare the new position rsat with the former position. If they differ
by more than a certain threshold value, iterate the procedure starting
from step 2.

Finally, the emission time at the system time scale is given by8

T [emission] = trcv[emission]− δtrcv (5.9)

where δtrcv is the receiver clock offset referred to the system time and that
may be obtained from a navigation solution (although ’a posteriori’).

Comments: This algorithm for calculating satellite coordinates at the
reception epoch possesses an efficient modularity because pseudorange mea-
surements are not needed to compute the transmission time.

If the receiver clock offset is small,9 then δtrcv may be neglected. On the
other hand, the receiver clock estimates from the navigation solution can be
used (extrapolated from the previous epoch). In any case, it must be taken
into account that neglecting this term when δtrcv reaches large values (e.g.
1 ms) may introduce errors up to the meter level in the satellite coordinates,
and this must be considered when building the navigation model;10 or, more

7Again, note that the satellite and receiver coordinates must be given in the same
reference system, because the satellite–receiver ray must be generated in a common
reference frame, see next section 5.1.1.2.

8Rigorously, equation (5.9) is T [emission] = f(T [reception]) = f(trcv[reception] −
δtrcv) ' trcv[emission]− δtrcv where function f(·) represents the geometric algorithm.

9Some receivers apply clock steering to adjust their clocks epoch by epoch and provide
offsets of a few nanoseconds. However, in many cases the receiver waits until it has
gathered an offset of 1 ms before adjusting the clock.

10That is, in the ‘design matrix’ or Jacobian matrix, obtained when linearising the
model with respect to coordinate and receiver clock errors, see section 6.1 and Ap-
pendix E.
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Figure 5.3: Effect of using the

satellite coordinates at reception

time instead of transmission time

in positioning (see exercise 1.h of

session 5.2 in Volume II and

[Sanz et al., 2010]).

precisely, with respect to the partial derivative of the receiver clock in the
design matrix.

Figure 5.3 illustrates the effect of neglecting the travel time in the satel-
lite coordinate computation for positioning. It corresponds to a receiver
located in Barcelona, Spain (receiver coordinates ϕ ' 41◦, λ ' 2◦). During
the 70 to 90 ms of travel time, the satellite moves about 300 m, which leads
to ±60 m in range. The effect on the user’s position is up to 50 m or more
in the horizontal and vertical components.

5.1.1.2 Computation of Satellite Coordinates

Once the signal transmission time is known, the satellite coordinates may
be calculated at that epoch in a given reference frame (either the inertial or
ECEF rotating frame). Algorithms (and the associated software code) for
computing such coordinates in an ECEF reference frame, from the broad-
cast navigation message, were given in section 3.3.1 for the GPS, Galileo or
Beidou satellites, and in section 3.3.2 for the Glonass satellites. Algorithms
using precise orbits can be found in section 3.3.3.

As mentioned previously, it must be taken into account that an ECEF
frame is an Earth-fixed system and therefore rotates with Earth. This
system must be taken at the signal reception time (in the GNSS time scale),
because it is a common reference for all measurements.

An algorithm for computing satellite coordinates at transmission time,
but referred to the ECEF tied to Earth at reception time, is as follows:

1. Calculate the satellite coordinates at emission time in the associated
ECEF reference frame (i.e. tied to emission time).
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Indeed, assume that the software routine orb does this computation;11

then
T [emission] =⇒ [orb] =⇒ r̃sat (5.10)

Note again that the computed coordinates are given in the ECEF
frame tied to Earth at emission time. Thus, Earth’s rotation while
the signal travels from the satellite to the receiver must be taken into
account to transform such coordinates to the adopted common ECEF
frame at reception time. This is done in the next step.

2. Transform the satellite coordinates from the system tied to Earth at
‘emission time’ to the system tied to Earth at ‘reception time’(which
is common for all measurements). In order to do this, consider Earth’s
rotation during the time interval ∆t that the signal takes to propagate
from the satellite to the receiver:

rsat = R3 (ωE∆t) · r̃sat (5.11)

where ωE is Earth’s rotation rate and R3[θ] is a matrix defining a
rotation of angle θ around the z-axis:

R3[θ] =

 cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1

 (5.12)

and

∆t =

∥∥r̃sat − r0rcv

∥∥
c

(5.13)

where r0rcv is an approximate position of the user’s receiver.

Note that it is advisable to calculate ∆t using the former expression,
even when the pseudorange method is used to find the signal propa-
gation time (equation (5.5)). The reason for this is that R/c includes
other delays (clock offsets etc.) besides the purely geometric part ρ/c.
In other words, R/c establishes a very precise link between reception
time (in the receiver time tags) and transmission time (in the satellite
clock). Nevertheless, as a geometric distance it can be biased (mainly
by the satellite and receiver clock offsets) by hundreds of kilometres.

Figure 5.4 illustrates the effect of neglecting Earth’s rotation (equation
(5.11)) during the travel time from satellite to receiver for the same example
in Fig. 5.3. The effect on range is up to 20 m. As expected, this is seen in
the position, basically, as a rotation to the east, moving the receiver about
25 m (receiver coordinates ϕ ' 41◦, λ ' 2◦).

11For broadcast GPS, Galileo or Beidou orbits, the orb program corresponds to
sub orbit.f, see section 3.3.1. For the Glonass broadcast orbits, it corresponds to
GLOeph2sp3.f, see section 3.3.2. For GNSS precise orbits, orb is a Lagrange interpo-
lator of satellite coordinates, as well, see section 3.3.3.

101



TM-23/1

Figure 5.4: Effect of Earth’s

rotation (see exercise 1 of

session 5.2 in Volume II).
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5.1.1.3 Satellite Eclipses

High-accuracy GNSS positioning degrades during the GNSS satellites’
eclipse seasons. Indeed, once the satellite goes into shadow, the radiation
pressure vanishes. This effect introduces errors in the satellite dynamics
due to the difficulty of properly modelling the solar radiation pressure. On
the other hand, the satellite’s solar sensors lose sight of the Sun and the
attitude control (trying to keep the panels facing the Sun) is degraded. The
yaw attitude of GPS satellites is essentially random during an eclipse and
for up to 30 min after exiting the shadow [Bar-Sever, Y.E., 1994]. Every
GPS satellite has two eclipse seasons per year, each lasting for about seven
weeks [Mervat, 1995].

As a consequence, the orbit during shadow and eclipse periods may be
considerably degraded and the removal of satellites under such conditions
can improve the high-precision positioning results.

The eclipse condition can be defined by a simple cylinder model for
Earth’s shadow (see Fig. 5.5) [Mervat, 1995]:

cosφ =
rsat · rsun
rsat rsun

< 0 and rsat
√

1− cos2 φ < aE (5.14)

where rsat and rsat are, respectively, the vector from the geocentre to the
satellite and the magnitude of that vector; rsun is the geocentre vector to
the Sun, and aE is the mean equatorial radius of Earth (see Table 3.2 or
3.3).

Note that, as mentioned above, the satellites should be removed during
the eclipse condition and also for the first 30 min, at least, after exiting the
eclipse.

The eclipse condition is implemented in gLAB.
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SunSatellite

Figure 5.5: Simple cylinder

model for the shadow of Earth.

5.1.2 Relativistic Path Range Correction

This is a secondary relativistic effect that might be required only for high-
accuracy positioning. Its net effect on range is less than 2 cm and therefore,
for most purposes, it can be neglected.

The effect is called the Shapiro signal propagation delay and it introduces
a general relativistic correction into the geometric range. Due to the space–
time curvature produced by the gravitational field, the Euclidean range
computed by equation (5.2) must be corrected by an amount given by the
expression

∆ρrel =
2µ

c2
ln
rsat + rrcv + rsatrcv

rsat + rrcv − rsatrcv

(5.15)

where rsat, rrcv are the geocentric distances of the satellite and receiver and
rsatrcv is the distance between them. The constants c and µ are the speed of
light and Earth’s gravitational constant, respectively (see Table 3.2).

This correction must be added to the Euclidean distance given by equa-
tion (5.2). The effect is implemented in the gLAB tool.

Figure 5.6 illustrates an example of the Shapiro signal propagation de-
lays for satellites in view from a receiver in Barcelona, Spain (receiver
coordinates ϕ ' 41◦, λ ' 2◦).

A very good review of relativistic effects on GPS can be found in
[Ashby, N., 2003] (http://relativity.livingreviews.org/Articles/lrr-2003-1 ).

Figure 5.6: Shapiro correction to

the geometric range for satellites

in view from a receiver at

coordinates φ ' 41◦, λ ' 2◦.
See exercise 2f of session 5.2 in

Volume II.
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5.2 Clock Modelling

The clock offsets are due to clock synchronisation errors referring to the
GNSS time scale. The modelling of such offsets, as well as its effect on the
navigation solution, are described as follows:

Receiver clock offset (δtrcv): This is estimated together with the re-
ceiver coordinates, hence no modelling is needed in this case.

Satellite clock offset (δtsat): This can be split into two terms:12

δtsat = δ̃t
sat

+ ∆rel (5.16)

The first term (δ̃t
sat

) can be calculated from values broadcast in the
navigation messages (for SPP) or from the precise products available
from IGS centres or other providers (for PPP), see section 3.3.3. The
second term (∆rel) is a small relativistic correction caused by the
orbital eccentricity, see equation (5.19).

The broadcast navigation message provides the clock information as
the coefficients of a polynomial, in a given reference epoch (t0), to
compute the satellite clock offset as

δ̃t
sat

= a0 + a1(t− t0) + a2(t− t0)2 (5.17)

In the case of GPS, Galileo or Beidou satellites, the satellite clock
offset (a0), clock drift (a1) and clock drift rate (a2) for a second-
order polynomial (see Table 3.8) are broadcast. In Glonass, as the
message is updated every half hour, only a first-order polynomial is
considered, that is (a0 = −τn) the clock offset and (a1 = γn) the
relative frequency offset, see Table 3.9.13

The accuracy of broadcast clocks is of the order of some nanoseconds.14

The precise GPS and Glonass satellite clocks provided by IGS are
accurate to the order of 0.1 ns or better,15 see Table 3.10.

Figure 5.7 illustrates the effect of neglecting the GPS satellite clock
offsets on the user’s position, for the same example in Fig. 5.3. As
shown, the satellite clocks reach up to more than 150 km, which leads
to huge position errors.

12Glonass satellites transmit ∆rel within the satellite clock corrections δ̃t
sat

.
13Note that, in the RINEX files, the −τn value is given instead of τn.
14With the GPS selective availability activated they can be degraded by up to more

than 100 ns.
15Note that 1 ns of error means 30 cm in range.
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Figure 5.7: Satellite clocks: range and position domain effect. Left and middle panels show the horizontal and vertical

positioning errors, respectively, using (blue) or not using (red) the satellite clock offsets. The variation in range is shown in

the right panel. See exercise 1.d of session 5.2 in Volume II.

5.2.1 Relativistic Clock Correction

The rate of advance of two identical clocks, one placed in the satellite
and the other on the terrestrial surface, will differ due to the difference
in the gravitational potential (general relativity) and to the relative speed
between them (special relativity). This difference can be split into the fol-
lowing [Ashby, N., 2003]:

• A constant component that depends only on the nominal value of the
semi-major axis of the satellite orbit, which is adjusted by modifying
(in the factory) the clock oscillating frequency of the satellite:16

f ′0 − f0

f0
=

1

2

(v
c

)2
+
4U
c2
' −4.464 · 10−10 (5.18)

• A periodic component due to the orbital eccentricity (that must be
applied by the user’s receiver software)

∆rel = −2
rsat · vsat

c2
(5.19)

where rsat and vsat are the satellite position (m) and velocity (m/s)
vectors in an inertial system.17 The scalar product rsat · vsat can be
evaluated either in a CRS or TRS (i.e. ECEF system).

Notice that in an ECEF system, Earth’s rotation effect ωE × rsat

should be discounted from vsat, but it cancels in the scalar product
with rsat.

16Since f0 = 10.23 MHz, one has ∆f0 = 4.464 · 10−10 f0 = 4.57 · 10−3 Hz, thus the
satellite must use f ′0 = 10.229 999 995 43 MHz. Note that f ′0 is the frequency ‘emitted’
by the satellite and f0 is the one ‘received’ on the terrestrial surface (i.e. an apparent
increase of the frequency is 4.57 · 10−3 Hz). That is, the clock on the satellite appears
to run faster (' 38µs/day) than on the ground (note: ∆f/f = ∆T/T ). This effect is
corrected (in the factory) by decreasing the oscillating frequency of the satellite by the
amount 4.57 · 10−3 Hz.

17Note that, over the osculating orbit (see section 3.2.3),
√
µa e sinE = r · v. Thus,

∆rel = −2 r · v/c2 = −2 (
√
µa/c2) e sinE, where µ is the gravitational constant, c the

speed of light in a vacuum, a and e the semi-major axis and eccentricity of the osculating
orbit (see Table 3.2) and E the eccentric anomaly. See exercise 5f of session 5.2 in
Volume II.
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Figure 5.8: Relativistic correction: range and position domain effect. Left and middle panels show the horizontal and vertical

positioning error, respectively, using (blue) or not using (red) the relativistic correction (5.19). The variation in range, in metres,

is shown in the right panel. See exercise 1b of session 5.2 in Volume II.

Unlike in GPS, Galileo or Beidou relativistic corrections to Glonass or-
bital eccentricity are transmitted within the navigation message as satellite
clock corrections (τn, γn). Therefore, equation (5.19) is not needed with
such a broadcast message [Ashby, N., 2003].

All the previous corrections, that is satellite clock offset from broadcast
or precise clocks and relativistic correction (5.19), are implemented in the
gLAB software.

Figure 5.8 illustrates the effect of neglecting the relativistic correction
given by equation (5.19) on the user’s position, for the same example as in
Fig. 5.3. As was shown, range errors up to 13 m and vertical errors over
20 m can be experienced when neglecting this correction.

5.3 Instrumental Delays

Possible sources of these delays are antennas and cables, as well as different
filters used in receivers and satellites. These instrumental delays affect both
code and carrier measurements.

The receiver instrumental delay is assimilated in the receiver clock. That
is, since the delay is common for all satellites, it is assumed to be zero and
is included in the receiver clock estimate.

As explained in section 4.1, the satellite clocks (broadcast or precise) are
referred to the ionosphere-free combination of codes (RC) and hence the
instrumental delays cancel in such a combination of two-frequency signals.

For single-frequency users, the satellites broadcast in their navigation
messages the Timing Group Delay or Total Group Delay (TGD), which
is proportional to the DCB, or interfrequency bias, between the two codes
involved in such an RC combination as K21 ≡ K2−K1, see equations (4.13)
and (4.19). That is,

TGD1 =
−1

γ12 − 1
(Ksat

2 −Ksat
1 ) = −α̃1K

sat
21 (5.20)
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Figure 5.9: Total Group Delay (TGD): range and position domain effect. Left and middle panels show the horizontal and

vertical positioning error, respectively, using (blue) or not using (red) the broadcast TGDs (equation (5.20)). The variation in

range is shown in the right panel. See exercise 1c of session 5.2 in Volume II.

As the instrumental delays cancel in the RC combination, the TGDs for
the two associated codes are related by the square of their signal frequencies:

TGD2 = γ12 TGD1 (5.21)

It must be pointed out that the instrumental delay depends not only on
the signal frequency but also on the code. For example, there is a DCB
between the C1 and P1 GPS codes, and therefore the DCB between the
P2 and P1 codes is different to that between the P2 and C1 codes. The
biases between the C1 and P1 codes for the different GPS satellites are
provided, for instance, by IGS centres (see exercise 8 of laboratory session
5.1 in Volume II for an example of P1C1 DCB estimation using Ashtech
Z-X12 receiver measurements).

The Galileo navigation messages F/NAV and I/NAV broadcast TGDs
for the code on frequency E1, associated with the ionosphere-free combina-
tions of codes at the frequencies E5a, E1 and E5b, E1, respectively. Neither
TGDs nor any ionospheric model are broadcast in the Glonass navigation
message.

Among the navigation messages, DCBs are also provided by IGS centres,
together with Global Ionospheric Maps (GIM) files. In this regard, it should
be pointed out that, as explained in section 4.1.1.3.3, there is a correlation
between the DCBs and the ionospheric estimates. Indeed, the DCBs are
associated with the ionospheric model used to compute such values. Thus,
the DCBs broadcast in the GPS navigation message must be used with the
Klobuchar ionospheric model (see section 5.4.1.2.1), and the DCBs of IGS
with its associated GIMs.

Figure 5.9 illustrates the values of the GPS P1 code TGDs for the same
example as in Fig. 5.3. Moreover, the effect of neglecting such delays in SPP
for the horizontal and vertical error components is depicted by comparing
the navigation solution using (blue) and not using (red) such TGDs.

Finally, the carrier phase instrumental delays are assimilated into the
unknown ambiguities, which are estimated as real numbers (floating am-
biguities) when positioning in PPP (see section 6.2). Figure 6.4 in section
6.3.2 shows the fractional part of the wide-lane and L1 ambiguities (i.e.
b = B − λN , see equations (4.19)), for a GPS satellite and for a receiver.
These carrier instrumental delays cancel in the double differences between
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satellites and receivers and thus are not needed for fixing ambiguities in
differential mode. Nevertheless, they are needed (the satellite ones) for
undifferenced ambiguity fixing, for example ambiguity fixing for PPP (see
section 6.3.2).

5.3.1 Code Measurements and Receiver Types

The DCB handling for the C1, P1 and P2 code measurements collected
from GPS receivers implementing different tracking technologies is dis-
cussed next.

As explained in section 2.2.1, under Anti-Spoofing (A/S) conditions,
the GPS P codes (P1, P2) are encrypted to (Y1, Y2) for unauthorised
users. Nevertheless, many commercial receivers are able to provide P1, P2
measurements among the C1 ones. The generation of such P1, P2 codes
under A/S conditions depends on the code tracking technology, which must
be taken into account for correct DCBs handling.

For instance, cross-correlated receivers (e.g. Rogue and Trimble 4000
models) provide a synthetic P2 code generated from C1 code and the cross-
correlation of encrypted Y2 − Y1 codes (roughly speaking, P2 := C1 + [Y2
− Y1]). This leads to a P2 code measurement associated with C1, not P1,
which then must be corrected by the Differential Code Bias DCBP1-C1 to
get a consistent P2 measurement.

On the other hand, these receivers do not provide the P1 code, just the
C1 code. Thus, the DCBP1-C1 must be added to this C1 code to emulate
a consistent P1 code measurement. In this way, the interfrequency bias
DCBP2-P1 will cancel when computing the PC (i.e. the Code ionosphere-
free combination) of such P1 and P2 codes.

Three different kinds of receivers are usually considered (for more details
see [Schaer, S. and Steingenberger, P., 2006]):

Type 1: Cross-correlated receiver
The C1 and P2 measurements must be corrected by the DCBP1-C1:

C1raw + DCBP1−C1 −→ P1

P2raw + DCBP1−C1 −→ P2

Type 2: Receivers reporting C1 in place of P1
The C1 must be corrected by the DCBP1-C1:

C1raw + DCBP1−C1 −→ P1

Type 3: Receivers reporting L1, L2, P1, P2 as a consistent set
No bias removal is needed.

A RINEX conversion utility cc2noncc.f is provided by IGS to easily
make code measurements consistent with P1/P2 data by applying
satellite-dependent P1−C1 bias corrections. This tool is available at
https://goby.nrl.navy.mil/IGStime/cc2noncc/cc2noncc.f .

These DCBs corrections are only required for geodetic (high-accuracy)
surveying, as its impact on coordinate accuracy is at the level of a few
millimetres (see exercise 7 of laboratory session 5.1 in Volume II).
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This DCBs handling is implemented in gLAB, which is able to process the
IGS files P1C1YYMM.DCB available from the ftp://ftp.unibe.ch/aiub/CODE
site.

5.4 Atmospheric Effects Modelling

These effects include the excess GNSS signal path due to the variation of
the refractive index in the atmosphere and, mainly, the delays/advances in
the signal due to its propagation speed in the atmosphere (ionosphere and
troposphere).

Electromagnetic Beam Bending

As is well known, the density of the atmospheric gas and plasma is not
homogeneous. This causes spatial and temporal variations in the refractive
index. Due to the refractive index gradients, the rays have an extended
geometric path, regarding the free space path, when travelling through the
atmosphere. Snell’s law states that if an electromagnetic wave travels from
an environment with refractive index n1 to a second one with refractive
index n2 and crosses the distance between them at an angle ϕ1, it will
be deviated by an angle ϕ2. The relation between these four values is
summarised by the expression n1 · sinϕ1 = n2 · sinϕ2.

Figure 5.10 (left) illustrates this basic postulate: ϕ2 < ϕ1 because
n2 > n1. The consequences of this law can be seen in Fig. 5.10 (right),
where the successive paths through different layers, each with its own re-
fractive index, causes the ray path to bend and thus causes an excess of
geometric path as discussed above.

For the troposphere [Parkinson et al., 1996], the effect caused by ne-
glecting path curvature is less than 3 mm for elevations greater than 20◦,
2 cm for elevations close to 10◦, and increases to 17 cm at elevations close
to 5◦ (mainly due to dry gases).

For the ionosphere, these errors can reach up to a few centimetres for
L1 and L2 GPS signals, at low elevations and under high solar activity
conditions [Hoque and Jakowsky, 2008]. On the other hand the bending
angle is proportional to the inverse of the squared frequency and mostly
cancels out in the ionosphere-free combination [Hajj et al., 2002] (see also
the tutorial [Sanz et al., 2012]).
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Figure 5.10: Snell’s law and its

effects over the ray path.
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Propagation Speed: Phase and Group Velocity

A brief review of wave propagation concepts is given as follows, in order to
introduce the definitions of phase and group velocity.

A pure sinusoidal monochromatic signal travelling in the x direction can
be described by (see Fig. 5.11, top)

s(x, t) = s0 cos(ωt− k x+ φ0) (5.22)

where ω = 2π/T , k = 2π/λ and T = 1/f = 2π/ω, with f , T and λ the
frequency, period and wavelength, respectively.

Here, s(x, t) is a function that depends on both time and position. At
any fixed instant of time t the function varies sinusoidally along the x-axis,
whereas at any fixed location of the x-axis the function varies sinusoidally
with time.

The speed at which the shape is moving, that is the speed at which
any fixed phase of the cycle is displaced, is called the phase velocity. This
velocity, according to equation (5.22), is given by

vph =
ω

k
(5.23)

because ωt−kx+φ0 remains constant by changing x and t when x = (ω/k)t.

An amplitude-modulated signal can be generated by simply adding two
sinusoidal signals at slightly different frequencies:

s1(x, t) = cos((ω+∆ω)t−(k+∆k)x), s2(x, t) = cos((ω−∆ω)t−(k−∆k)x)
(5.24)

Using simple trigonometric identities, it is found that

s1(x, t) + s2(x, t) = 2 cos(∆ωt−∆k x) cos(ωt− k x) (5.25)

A plot of an example to illustrate the combination of signals of equation
(5.25) is shown in Fig. 5.11.

From equation (5.25), it follows that two signals can appear to travel at
two different velocities as a result of the superposition of signals s1(x, t) and
s2(x, t). That is, in the bottom plot of Fig. 5.11, the internal oscillations
(in blue) travel at velocity v = ω/k, whereas the amplitude envelope (in
red) travels at velocity ∆ω/∆k.

The velocity of the modulation ∆ω/∆k when considering the limit
∆k → 0 can be written as

vgr =
dω

dk
(5.26)

Equation (5.26) defines the group velocity.

Note that, when the angular frequency ω and the wave number k are
proportional, then the phase and group velocities are the same, that is
vgr = vph. On the other hand, from equation (5.23) it is obvious that,
in this case, the phase velocity vph does not depend on the frequency. A
medium in which this condition is fulfilled is said to be non-dispersive.

On the contrary, a medium in which the wave propagation speed varies
with the frequency is said to be dispersive (from light dispersion by a prism).
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Figure 5.11: The signals of the

top two plots, with slightly

different frequencies, are added

to generate the signal in the

bottom plot.

Thus, the envelope travels at different speed vgr than the internal oscilla-
tions vph. In this case, if we were riding along with the envelope in Fig. 5.11,
we would observe the internal oscillations moving forward from one group
to the next.

The refractive index (n) in a medium is the ratio between the propa-
gation speed of a signal in a vacuum (c) to the speed in the medium (v).
Hence, two different refractive indices can be defined for the group and
phase:

nph =
c

vph
, ngr =

c

vgr
(5.27)

In the context of GNSS signals, the carrier waves are propagating with
the phase velocity and so this is the velocity associated with the carrier
measurements. The group velocity is what has to be considered for the
code measurements (i.e. pseudoranges obtained from the codes modulated
in the carriers).18

As explained in the following sections, the troposphere is a non-dispersive
medium for radio waves at the GNSS frequencies. Hence, code and carrier
phase measurements are associated with the same velocity in the tropo-
sphere. By contrast, codes and phases propagate at different speeds in the
ionosphere, resulting in a delay in the code and an advance in the carrier
measurements, see equation (5.37).

18Note that the information and energy are propagated in a wave as changes in the
wave, for example by modulating the codes. Thus, the information propagates at the
group velocity.
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Atmospheric Refraction

The electromagnetic signals experience changes in velocity (speed and di-
rection) when passing through the atmosphere due to the refraction.

According to Fermat’s principle, the measured range l is given by the
integral of the refractive index n along the ray path from the satellite to
receiver:

l =

∫
ray path

ndl (5.28)

Then, the signal delay can be written as

∆ =

∫
ray path

ndl −
∫

straight line

dl (5.29)

where the second integral is the Euclidean distance between the satellite
and receiver.

Note that the previous definition includes both the signal bending and
propagation delay. One simplification of the previous expression is to ap-
proximate the first integral along the straight line between the satellite and
receiver:

∆ =

∫
straight line

(n− 1) dl (5.30)

From the point of view of signal delay, the atmosphere can be divided
into two main components: the neutral atmosphere (i.e. the non-ionised
part), which is a non-dispersive medium; and the ionosphere, where the de-
lay experienced by the signals depends on their frequency. The ionospheric
and tropospheric delays are discussed in the next two sections.

It must be pointed out that the neutral atmosphere includes the tropo-
sphere and stratosphere, but the dominant component is the troposphere,
and therefore the name of the delay usually refers only to the troposphere
(as tropospheric delay).

5.4.1 Ionospheric Delay

The ionosphere is that part of the terrestrial atmosphere that extends from
about 60 km up to more than 2000 km. As its name implies, it contains a
partially ionised medium, as a result of solar X- and Extreme UltraViolet
(EUV) rays in the solar radiation and the incidence of charged particles.

The propagation speed of GNSS electromagnetic signals in the iono-
sphere depends on its electron density (see below), which is typically driven
by two main processes. During the day, the Sun’s radiation ionises neutral
atoms to produce free electrons and ions. During the night, the recombi-
nation process prevails, where free electrons are recombined with ions to
produce neutral particles, which leads to a reduction in the electron density.

As commented above, a medium where the angular frequency ω and the
wave number k are not proportional is a dispersive medium (i.e. the wave
propagation speed and hence the refractive index depend on the frequency).
This is the case with the ionosphere where ω and k are related, to a first
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approximation, by [Crawford, 1968], section 4.3, example 7,

ω2 = c2k2 + ω2
p (5.31)

where c is the propagation speed of a signal in a vacuum and19

ωp = 2πfp with fp = 8.98
√
Ne in Hz (5.32)

where Ne is the electron density (in e−/m3). A complete derivation of this
relationship can be found in [Davies, 1989] and the updated higher order
terms in [McCarthy, D. and Petit, G., 2009], which is typically less than
0.1% of the total delay.

Equation (5.31) is called the relation of dispersion of the ionosphere, and
ωp is called the critical frequency of the ionospheric plasma, in the sense
that signals with ω < ωp will be reflected and signals with ω > ωp will pass
through the plasma [Davies, 1989].

The electron density in the ionosphere changes with height, having a
maximum of Ne ' 1011 to 1012 e−/m3 around 300− 500 km. Then, accord-
ing to expression (5.32), electromagnetic signals with f > fp ' 106 Hz will
be able to pass through the ionosphere. This is the case for GNSS signals
whose frequencies are of the order of 1 GHz (= 109 Hz). Radio signals with
frequencies below fp will be reflected in the ionosphere.

From equation (5.31), and taking into account that ω = 2πf and the
definition in equation (5.23), it follows that

vph =
c√

1− (fp/f)2
(5.33)

Thus, according to equation (5.27), the phase refractive index of the iono-
sphere can be approximated20 by

nph =

√
1−

(
fp
f

)2

' 1− 1

2

(
fp
f

)2

= 1− 40.3

f2
Ne (5.34)

At the frequency of GNSS signals, the previous approximation (5.34) ac-
counts for more than 99.9% of the refractivity (first-order ionospheric ef-
fect). That is, with less than an error of 0.1%, it can be assumed that

nph = 1− 40.3

f2
Ne (5.35)

19[Davies, 1989], page 94: Ne = 1.24 · 1010f2
p , with fp in MHz and Ne in electrons/m3.

20The approximation
√

1− x2 ' 1 − 1
2
x2 can be used when |x| � 1. Note that, on

taking f = 109 Hz as the frequency of the GNSS signals, and with fp ' 107 Hz, then
x = fp/f ' 10−2, which justifies the approximation.
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Differentiating equation (5.31) with respect to k, and taking into account
(5.23), (5.26), (5.27) and the approximation (1− ε2)−1/2 ' 1 + 1

2ε
2, yields

the group refractive index21

ngr = 1 +
40.3

f2
Ne (5.36)

Substituting the phase and group refractive indices (5.35 and 5.36) in (5.30),
the difference between the measured range (with frequency f signal) and
the Euclidean distance between the satellite and receiver is given by

∆iono
ph,f = −40.3

f2

∫
Ne dl, ∆iono

gr,f = +
40.3

f2

∫
Ne dl (5.37)

Therefore, phase measurements are advanced on crossing the ionosphere,
that is a negative delay, while the code measurements undergo a positive
delay.

The differences ∆iono
ph,f and ∆iono

gr,f are called the phase and code iono-
spheric refraction, respectively, and the integral is defined as the Slant
TEC (STEC)

STEC =

∫
Ne dl (5.38)

Usually, the STEC is given in TEC units (TECUs), where 1 TECU =
1016 e−/m2 and the ionospheric delay If (at the frequency f) is written
as22

If ≡ ∆iono
gr,f = αf STEC (units: metres of delay) (5.39)

with

αf =
40.3 · 1016

f2
msignal delay(at frequencyf)

/TECU (where f is in Hz) (5.40)

The TEC, and hence the ionospheric refraction, depend on the geo-
graphic location of the receiver, the hour of day and the intensity of the
solar activity. Figure 5.12 (left) shows a vertical TEC map of the geographic
distribution of the TEC, where the equatorial anomalies are clearly depicted
around the geomagnetic equator. The figure on the right shows the 11-year
solar cycle with a solar flux plot.

As the ionosphere is a dispersive medium, refraction of the GNSS signals
depends on their frequencies (as the squared inverse). This dependence on
the signal frequency allows us to remove its effect by up to more than 99.9%
using two-frequency measurements (see section 5.4.1.1 next). However,
single-frequency receivers have to apply an ionospheric prediction model to
remove this effect (as much as possible), which can reach up to several tens
of metres in size (see sections 5.4.1.2.1 and 5.4.1.2.2).

Several exercises depicting ionospheric effects on GNSS measurements
in different ionospheric conditions are given in session 4 of Volume II. Addi-
tional exercises, including electron density profile retrieval and atmospheric
bending analysis using radio-occultation measurements from receivers on
LEO satellites, can be found in [Sanz et al., 2012].

21Notice that ngr > nph and, thus, from (5.27) it follows that vgr < vph. Moreover, as
nph < 1, then vph = c/nph > c. That is, the phase travels faster than the speed of light,
but no information is carried, so no relativity principle is violated.

22In equations (5.1) or (4.19) the ionospheric delay I is given in metres of delay in the
geometry-free combination Φ1–Φ2. That is, I ≡ (α2 − α1) STEC, see equation (4.16).
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Figure 5.12: The map on the left

shows the vertical Total Electron

Content in TECUs at 19UT on

26 June 2000 (1 TECU ' 16 cm

of delay in the GPS L1 signal).

The plot on the right shows the

evolution of the solar flux during

the last solar cycles.

Advanced Comment. Second-Order Ionospheric Effect: The
previous results of equation (5.39) are often referred to as the first-order
ionospheric effect, denoted as I1f ≡ If . That is,

I1ph,f = −αf STEC = −I1gr,f (5.41)

As commented previously, equation (5.31) is a simplification of the relation
of dispersion of the ionosphere given in [McCarthy, D. and Petit, G., 2009],
where the dependence of the refractive index on the magnetic field B has
been neglected. If such terms are taken into account, higher order iono-
spheric terms appear (but they represent less than 0.1% of the total effect).

The second-order ionospheric term, its implementation and its impact
on geodesy are given in [HJS, 2007]. Its effect on carrier (I2ph,f ) and code
(I2gr,f ) measurements at frequency f is given by

I2ph,f = −7527 c

2 f3
1

∫ sat

rec
NeB cos θ dl (5.42)

I2gr,f = −2 I2ph,f (5.43)

where c is the speed of light. B is the magnitude of Earth’s magnetic field
B and θ the angle between B and the propagation direction. The units are
in the International System of Units (SI).

In global geodetic computations, I2 mainly affects the satellite clock
estimate (centimetre level) and orbits (a few millimetres), but the impact
on receiver position is usually less than 1 mm, see exercises 7 to 10 of session
4.3 in Volume II.

5.4.1.1 Ionosphere-Free Combination for Dual-Frequency Receivers

According to equations (5.37), the first-order ionospheric effects on code
RP and carrier phase ΦL measurements depend (99.9%) on the inverse of
squared signal frequency f . Therefore, the dual-frequency receivers can
eliminate these effect through a linear combination of code or carrier mea-
surements:

Φ
iono-free

=
f2

1 Φ1 − f2
2 Φ2

f2
1 − f2

2

, R
iono-free

=
f2

1 R1 − f2
2 R2

f2
1 − f2

2

(5.44)

This combination is called ionosphere-free as was presented in section
4.1.
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It must be pointed out that the Precise Point Positioning (PPP) uses
code and carrier phase measurements in the ionosphere-free combination
to remove the ionospheric refraction, because it is one of the effects that is
more difficult to model accurately. Moreover, the TGDs of the associated
codes also cancel in this combination and are not needed (since the satellite
clocks are referred to the ionospheric-free combination of such codes, see
section 4.1.1).

5.4.1.2 Ionospheric Models for Single-Frequency Receivers

Single-frequency receivers need to apply a model to remove the ionospheric
refraction, which can reach up to few tens of metres, depending on the
elevation of rays and the ionospheric conditions.

The models broadcast by the GPS, Galileo and Beidou satellites are
described in the next section. No ionospheric model is broadcast by the
Glonass satellites, but any of the GPS, Galileo or Beidou models can be
used for Glonass signals, by applying a correction factor given by their
relative squared frequency ratio.

5.4.1.2.1 Klobuchar Model

GPS and Beidou satellites broadcast the parameters of the Klobuchar iono-
spheric model for single-frequency users.23 The Klobuchar model was de-
signed to minimise user computational complexity and user computer stor-
age so as to keep a minimum number of coefficients to be transmitted on
the satellite–user link.

This broadcast model, initially developed for GPS, is based on an em-
pirical approach [Klobuchar, 1987] and is estimated to reduce the RMS
ionospheric range error by about 50% worldwide. It is assumed that the
electron content is concentrated in a thin layer at 350 km in height (375 km
is taken in Beidou). Thus, the slant delay is computed from the vertical de-
lay at the Ionospheric Pierce Point (IPP)24 by multiplying by an obliquity
factor (i.e. the mapping function), see Fig. 5.13 and equation (5.53).

Klobuchar Algorithm Equations

The Klobuchar algorithm to run in a single-frequency receiver is provided
as follows [Klobuchar, 1987].

Given the user’s approximate geodetic latitude ϕu and longitude λu, the
elevation angle E and azimuth A of the observed satellite and the Klobuchar
coefficients αn and βn broadcast in the GPS or Beidou satellite navigation
message:25

23Vertical ionospheric delays on a 5◦×2.5◦ grid covering 70◦–145◦ in longitud and 10◦–
55◦ in latitude are also broadcast in the Beidou NAV message [BeiDou-SIS-ICD, 2012].

24That is, the intersection of the ray with the ionospheric layer at 350 km in height.
25Simplified equations to reduce the computational load are given in

[IS-GPS-200, 2010].
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Ionospheric Layer 
(350 km in height) 

IPPs trajectories 
for a receiver in 

Barcelona, Spain 

IPP 

Vertical Delay 

Slant Delay 

Figure 5.13: Ionospheric Pierce

Points (IPPs), vertical and slant

delay illustration. The IPP

trajectories for the satellites in

view from a receiver in

Barcelona, Spain, are shown in

the map at the top.

1. Calculate the Earth-centred angle26

ψ = π/2− E − arcsin

(
RE

RE + h
cosE

)
(5.45)

2. Compute the latitude of the IPP27

φI = arcsin (sinϕu cosψ + cosϕu sinψ cosA) (5.46)

3. Compute the longitude of the IPP

λI = λu +
ψ sinA

cosφI
(5.47)

4. Find the geomagnetic latitude of the IPP

φm = arcsin (sinφI sinφP + cosφI cosφP cos(λI − λP )) (5.48)

with φP = 78.3◦, λP = 291.0◦ the coordinates of the geomagnetic pole.

5. Find the local time at the IPP

t = 43 200λI/π + tGPS (λI in radians, t in seconds) (5.49)

where 0 ≤ t < 86 400. Therefore:
If t ≥ 86 400, subtract 86 400. If t < 0, add 86 400.

6. Compute the amplitude of ionospheric delay

AI =
3∑

n=0

αn (φm/π)n (seconds) (5.50)

If AI < 0, then AI = 0.

26The height of the ionospheric layer is taken as 350 km for GPS and 375 km for Beidou.
RE = 6 378 km.

27That is, the latitude of the projection on Earth of the IPP with the ionospheric layer.
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7. Compute the period of ionospheric delay

PI =

3∑
n=0

βn (φm/π)n (seconds) (5.51)

If PI < 72 000, then PI = 72 000.

8. Compute the phase of ionospheric delay

XI =
2π(t− 50 400)

PI
(radians) (5.52)

9. Compute the slant factor (ionospheric mapping function)

F =

[
1−

(
RE

RE + h
cosE

)2
]−1/2

(5.53)

10. Compute the ionospheric time delay

I1=


[
5 · 10−9 +AI cosXI

]
× F, |XI | < π/2

5 · 10−9 × F, |XI | ≥ π/2
(5.54)

The delay I1 is given in seconds and is referred to the GPS L1 or
Beidou B1 frequencies.

Note that, I1 corresponds to the term α̂1 I in equations (4.17), (4.19)
or (5.1).

Although this algorithm is provided to estimate the ionospheric delay
in the GPS L1 or Beidou B1 signals, it can also be used to estimate the
ionospheric time delay in other frequency signals or for the Glonass and
Galileo signals, as well. Indeed, taking into account that the ionospheric
delay is inversely proportional to the square of the signal frequency, the
delay for any GNSS signal transmitted on frequency fk is given by

Ik =

(
f1

fk

)2

I1 (5.55)

The Klobuchar model is implemented in the gLAB software tool for SPP.
It is also implemented in program sub klob.f of Volume II.

Figure 5.15 is a layout of the Klobuchar model algorithm, showing that
the vertical delays are based on a constant value of 5 ns at night-time and a
half-cosine function in daytime, whose amplitude and period are given as a
function of the eight parameters (αi, βi, i = 0, . . . , 3) broadcast in the GPS
and Beidou navigation messages. A map with the geographic variation of
the vertical delay is also depicted in this figure.

Figure 5.14 illustrates with an example the values of the GPS delays
from the Klobuchar model and shows the effect of neglecting such delays
in single-point positioning for the horizontal and vertical error components
(same data set as in Fig. 5.3).
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Figure 5.14: Ionospheric correction: range and position domain effect. Left and middle panels show the horizontal and vertical

positioning error, respectively, using (blue) or not using (red) the Klobuchar ionospheric correction defined in section 5.4.1.2.1.

The variation in range is shown in the right panel. See exercise 1e of session 5.2 in Volume II.

4 8 12 16 18 24

Amplitude

½*Period

Local Time (hours)

5

10

15

20

25

30

Ti
m

e 
D

el
ay

 (
ns

 a
t 1

.6
 G

H
z)

Dc=5ns

Klobuchar model 

Where: 
     DC= 5ns 
     Φ= 14h (constant phase offset) 
      t = Local time 

1/ 22

( )

( ) 1 cos ( )

SLANT VERT

E

E

Ion Ion m elev

Rm elev elev
R h

−

=

  
 = −  +   

2 ( )cos ( )

2 ( ); ( )
2

VERT

tDC A day
P

Ion
tDC if night
P

π

π π

 −Φ +    = 
−Φ  ≥   

3 3

0 0

:

;

,  Klobuchar coefficients
 Geomagnetic latitude

α ϕ β ϕ

α β
ϕ

= =

= =

=
=

∑ ∑n n
n n

n n

n n

Being

A P

0 45 90 135 180-45-90-135-180
90

60

30

0

-30

-60

-90

0 10 20 30
(TECUs)

40 50 60 70 80 90 100

90

60

30

0

-30

-60

-90
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ionospheric model: layout of

algorithm.

5.4.1.2.2 NeQuick Model

The NeQuick model is the ionospheric model proposed for use in the Galileo
single-frequency receiver to compute ionospheric corrections. It is based on
the original profiler developed by [Di Giovanni and Radicella, 1990].

NeQuick is a three-dimensional and time-dependent ionospheric electron
density model, which provides the electron density in the ionosphere as a
function of position and time. Hence, it allows ionospheric delays (TEC
or STEC) to be computed as the integrated electron density along any ray
path.
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NeQuick FORTRAN 77 code was accepted by the International Telecom-
munications Union Radiocommunication Sector (ITU-R) in 2000 and
revised in 2002. It is freely available from http://www.itu.int/oth/
R0A04000018/en. It is referred to either as version 1 or ITU-R and con-
stitutes the current baseline for Galileo. The package includes a compre-
hensive description of the implementation as well as numerical integration
subroutines allowing vertical and slant TEC to be computed.

The input parameters of the model are the position (longitude, latitude
and height), the epoch (month and UT) and the solar activity (expressed28

as either F10.7 or R12). Other internal parameters are the foF2 and
M(3000)F2 values, which can be defined according to the ITU-R, among
other options depending on purpose.

The NeQuick model running in the Galileo single-frequency receivers is
driven by the effective ionisation level Az parameter (replacing the solar
flux) that is a function of the receiver’s location

Az = a0 + a1µ+ a2µ
2 (5.56)

where µ is the MOdified DIP latitude (MODIP),

tanµ =
I

√
cosϕ

(5.57)

with I the true magnetic inclination,29 or dip in the ionosphere (usually at
300 km), and ϕ the geographic latitude of the receiver [Rawer, 1963].

The coefficients a0, a1, a2 will be broadcast to users in the Galileo nav-
igation message and updated at least once a day.30 Ionospheric Distur-
bance Flag (IDF) alerts for five predefined regions (see Fig. 5.16) will also
be broadcast to alert users when the ionospheric correction coming from
the Galileo broadcast message might not meet the specified performance.
These disturbance flags will be transmitted continuously and updated with
the update rate of the navigation message (every 100 min).

The algorithm for the Galileo single-frequency receiver is based on the
following steps (from [Arbesser-Rastburg, B., 2006]):

1. Az is evaluated using a0, a1, a2 (from navigation message) and MODIP
calculated from the data inside the DIPLATS matrix31 from the
NeQuick model (which depends on estimated receiver position).

28The F10.7 index is a measure of the solar activity, that is the flux level gener-
ated by the Sun at Earth’s orbit at a wavelength of 10.7 cm (see Fig. 5.12, right). It
has been found to correlate well with the sunspot number (Rz). The sunspot num-
ber is defined from counts of the number of individual sunspots as well as the num-
ber of sunspot groups. The F10.7 index can be measured relatively easily and quickly
and has replaced the sunspot number as an index of solar activity for many purposes.
F10.7 and the smoothed sunspot number R12 (12-month moving average) are related by
R12 =

√
167 273.0 + 1123.6 (F10.7− 63.7)− 408.99 (ITU-R recommendation).

29I is 0◦ at the magnetic equator and 90◦ at the magnetic poles.
30These parameters will be determined from measured TEC data obtained during the

previous 24 h by the globally distributed Galileo Sensor Stations (GSS) network.
31Information on Earth’s magnetic field will be stored in the receiver firmware as

the DIPLATS matrix. It should be updated every five years, to take account of its
natural variation. This update should be considered in the design of the Galileo receivers
(MODIP table flash-able in firmware). The ITU-R maps for FoF2 and M3000(F2) files
will also be stored in 12 ASCII files, one for each calendar month.
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Northern Region 

Northern Middle Region 

Equatorial Region 

Southern  Middle Region 

Southern Region 

Figure 5.16: The five regions

defined for the disturbance flags

(in degrees MODIP) −90 to

−60, −60 to −30, −30 to 30,

30 to 60, 60 to 90 (source

[Arbesser-Rastburg, B., 2006]).

2. Electron density is calculated for a point along the satellite to receiver
path, using the NeQuick model with Az in place of F10.7.

3. Steps 1 and 2 are repeated for many discrete points along the satellite
receiver path. The number and spacing of the points will depend on
the height and they will be a trade-off between integration error and
computational time and power.

4. All electron density values along the ray are integrated in order to
obtain Slant TEC (or STEC).

5. STEC, in TECUs, is converted to metres of L1 slant delay for cor-
recting pseudo-ranges, by

If =
40.3 · 1016

f2
TEC (where f is in Hz) (5.58)

Note that, as with the Klobuchar model, the ionospheric corrections com-
puted by the NeQuick model can be used for any GNSS signal (GPS,
Glonass, Galileo, etc.) simply by setting the corresponding frequency in
equation (5.58).

5.4.2 Tropospheric Delay

The troposphere is the atmospheric layer between Earth’s surface and an
altitude of about 60 km.

The effect of the troposphere on the GNSS signals appears as an extra
delay in the measurement of the signal travelling from the satellite to the
receiver. This delay depends on the temperature, pressure and humidity
as well as the transmitter and receiver antenna locations and, according to
equation (5.30), can be written as

Tr =

∫
(n− 1) dl = 10−6

∫
N dl (5.59)
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where n is the refractive index of air and N = 106 (n−1) is the refractivity.
This refractivity can be divided into hydrostatic (i.e. dry gases, mainly N2

and O2) and wet (i.e. water vapour) components N = Nhydr +Nwet.

Each of these components has a different effect on GNSS signals. The
main feature of the troposphere is that it is a non-dispersive medium with
respect to electromagnetic waves up to 15 GHz; that is, the tropospheric
effects are not frequency dependent for GNSS signals. Thus, the carrier
phase and code measurements are affected by the same delay.

An immediate consequence of this non-frequency-dependent delay is that
the tropospheric refraction cannot be removed by combinations of dual-
frequency measurements (as is done with the ionosphere). Hence the only
way to mitigate the tropospheric effect is to use models and/or to esti-
mate it from observational data. Nevertheless, fortunately, most of the tro-
pospheric refraction (about 90%) comes from the predictable hydrostatic
component [Leick, 1994].

A brief description of the atmospheric dry and wet component effects
on GNSS signals is as follows:

• Hydrostatic component delay: This is caused by the dry gases present
in the troposphere (78% N2, 21% O2, 0.9% Ar, etc.). Its effect
varies with local temperature and atmospheric pressure in a quite
predictable manner, although its variation is less than 1% over a few
hours. The error caused by this component is about 2.3 m in the
zenith direction and 10 m for lower elevations (10◦ approximately).

• Wet component delay: This is caused by the water vapour and con-
densed water in the form of clouds and, therefore, it depends on the
weather conditions. The excess delay is small in this case, only some
tens of centimetres, but this component varies faster than the hydro-
static component and in a quite random way, thus being very difficult
to model.

The dry atmosphere can be modelled from the surface pressure and
temperature using the laws of ideal gases. The wet component is more
unpredictable and difficult to model, so for high-accuracy positioning, this
delay is estimated together with the coordinates.

The tropospheric delay depends on the signal path through the neutral
atmosphere, and therefore can be modelled as a function of the satellite
elevation angle. Due to the differences between the atmospheric profiles
of the dry gases and water vapour it is better to use different mappings
for the dry and wet components. Nevertheless, simple models such as
[RTCA-MOPS, 2006] use a common mapping for both components.

Several nominal tropospheric models are available in the literature, but
differ in the assumptions made on the vertical profiles and mappings. Ba-
sically, they can be classified in two main groups: geodetic-oriented or
navigation-oriented. The first group (Saastamoinen, Hopfield and other
models [Xu, 2007]) are more accurate but generally more complex, and
need surface meteorological data, since their accuracy is affected by the
quality of these data. The second group are less accurate, but meteorolog-
ical data are not needed.
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5.4.2.1 Example of Tropospheric Model for SPP

The tropospheric model presented here was developed by [Collins, 1999]
and is the model adopted by the Satellite-Based Augmentation System
(SBAS) (WAAS, EGNOS, etc.) [RTCA-MOPS, 2006].

In this case, there is a common mapping function for the wet and dry
troposphere:

Tr(E) = (Trz,d + Trz,w)M(E) (5.60)

where Trz,d and Trz,w (in m) are calculated from the receiver’s height and
estimates of five meteorological parameters: pressure [P (mbar)], temper-
ature [T (K)], water vapour pressure [e (mbar)], temperature ‘lapse’ rate
[β (K/m)] and water vapour ‘lapse rate’ [λ (dimensionless)]. The obliquity
factor M(E) is the [Black and Eisner, 1984] mapping

M(E) =
1.001√

0.002 001 + sin2(E)
(5.61)

which is valid for satellite elevation angles E over 5◦.

For a given receiver latitude ϕ and day of year D (i.e. from 1 January),
the value of each meteorological parameter is computed from the averaged
meteorological parameters of Table 5.1.

Indeed, each parameter value (P , T , e, β, λ) is computed as

ξ(ϕ,D) = ξ0(ϕ)−∆ξ(ϕ) cos

[
2π(D −Dmin)

365.25

]
(5.62)

where Dmin = 28 for northern latitudes and 211 for southern latitudes;
ξ0(ϕ) and ∆ξ(ϕ) are the average and seasonal variation values at the re-
ceiver’s latitude ϕ linearly interpolated from Table 5.1.

The zero-altitude vertical delay terms Trz,d and Trz,w are given by

Trz0,d =
10−6 k1Rd P

gm
, T rz0,w =

10−6 k2Rd
(λ+ 1) gm − β Rd

e

T
(5.63)

The vertical delay terms Trz,d and Trz,w at the receiver’s height H are
calculated as

Trz,d =

[
1− β H

T

] g
Rdβ

Trz0,d , T rz,w =

[
1− β H

T

] (λ+1)g
Rdβ

−1

Trz0,w (5.64)

where H is the height above mean sea level, in m, k1 = 77.604 K/mbar,
k2 = 382 000 K2/mbar, Rd = 287.054 J/(kg K), gm = 9.784 m/s2 and g =
9.80665 m/s2.

The computation of vertical delays in equation (5.64) and mapping func-
tion (5.60) are implemented in gLAB as the nominal model for SPP. They
are also implemented in program sub trpUNB3.f of Volume II.

Figure 5.17 illustrates with an example the values of the tropospheric
delay and the effect of neglecting such delays in SPP for the horizontal and
vertical error components (same data set as in Fig. 5.3).
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Figure 5.17: Tropospheric correction: range and position domain effect. Left and middle panels show the horizontal and vertical

positioning error, respectively, using (blue) or not using (red) the tropospheric correction (equation (5.60)). The variation in

range is shown in the right panel. See exercise 1f of session 5.2 in Volume II.

Table 5.1: Meteorological parameters for the tropospheric delay. Parameters for latitudes

15◦ < |ϕ| < 75◦ must be linearly interpolated between values for the two closest latitudes

[ϕi , ϕi+1]. Parameters above |ϕ| ≤ 15◦ and |ϕ| ≥ 75◦ are taken directly from the table.

Latitude
Average

P0 T0 e0 β0 λ0
(◦) (mbar) (K) (mbar) (K/m)

15 or less 1013.25 299.65 26.31 6.30·10−3 2.77
30 1017.25 294.15 21.79 6.05·10−3 3.15
45 1015.75 283.15 11.66 5.58·10−3 2.57
60 1011.75 272.15 6.78 5.39·10−3 1.81

75 or more 1013.00 263.65 4.11 4.53·10−3 1.55

Latitude
Seasonal variation

∆P ∆T ∆e ∆β
∆λ

(◦) (mbar) (K) (mbar) (K/m)
15 or less 0.00 0.00 0.00 0.00·10−3 0.00

30 −3.75 7.00 8.85 0.25·10−3 0.33
45 −2.25 11.00 7.24 0.32·10−3 0.46
60 −1.75 15.00 5.36 0.81·10−3 0.74

75 or more −0.50 14.50 3.39 0.62·10−3 0.30

5.4.2.2 Example of Tropospheric Model for PPP

The example presented here is one the tropospheric models implemented
in the GIPSY-OASIS II software [Webb and Zumberge, 1993], which does
not require any surface meteorological data. This model uses the mapping
of Niell (see next section), which considers different obliquity factors for
the wet and dry components

Tr(E) = Trz,dry ·Mdry(E) + Trz,wet ·Mwet(E) (5.65)

In this implementation, the wet tropospheric delay is estimated by the
navigation filter together with the receiver’s position. This approach allows
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Figure 5.18: Comparison of ZTD

(PPP) estimate with IGS

determination. See exercise 5b

of session 5.1 in Volume II.

a huge simplification of the model for the vertical delays, whose nominal
values are

Trz,dry = α e−βH

Trz,wet = Trz0,wet + ∆Trz,wet
(5.66)

where α = 2.3 m, β = 0.116 · 10−3 and H is the height above sea level, in
m. Trz0,wet = 0.1 m and ∆Trz,wet is estimated32 as a random walk process
(typically 1 cm2/h of process noise) in the navigation – Kalman – filter
together with the coordinates and other parameters, see section 6.2.2. The
accuracy of the ∆Trz,wet estimates in static positioning is at the centimetre
level.

Figure 5.18 shows a comparison of the Zenith Tropospheric Delay (ZTD)
estimate (static PPP) with the IGS determination (exercise 6 of laboratory
session 5.2 in Volume II).

5.4.2.2.1 The Mapping of Niell

A mapping function that does not require surface meteorology measure-
ments, but provides comparable accuracy and precision to others that re-
quire such data, is presented in [Niell, 1996]. This mapping uses only the
receiver’s geographic location and measurement time as inputs.

The mapping of Niell involves two different obliquity factors, for the dry
and wet components, which are computed from equations (5.67) to (5.70),
where (E) is the elevation of the ray and (H) is the receiver’s height above
sea level, in km:

Hydrostatic mapping function:

Mdry(E,H) = m(E, ad, bd, cd) + ∆m(E,H)

with

∆m(E,H) =

[
1

sinE
−m(E, aht, bht, cht)

]
H

(5.67)

32Actually, by using the simplest model, the mismodelling for the dry component is
also captured by this parameter estimate.
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Wet mapping function:

Mwet(E) = m(E, aw, bw, cw) (5.68)

where m(E, a, b, c) is the [Marini, 1972] mapping normalised to unity at
zenith:

m(E, a, b, c) =

1 +
a

1 + b
1+c

sinE +
a

sinE + b
sinE+c

(5.69)

The hydrostatic parameters ad, bd, cd are time (t) and latitude (ϕ)
dependent parameters given by

ξ(ϕ, t) = ξavg(ϕ)− ξamp(ϕ) cos

(
2π

t− T0

365.25

)
(5.70)

where t is the time from January 0.0, in days, and T0 is taken as DoY
28 (i.e. T0 = 28). The parameters ξavg(ϕi) and ξamp(ϕi) are linearly
interpolated from Table 5.2 between the nearest ξ(ϕi). The aht, bht,
cht parameters are taken directly from the same table.

The wet parameters aw, bw, cw are latitude dependent and are linearly
interpolated from Table 5.3 between the nearest ξ(ϕi).

Table 5.2: Coefficients of the hydrostatic mapping function.

Coefficient Latitude (ϕ)

ξ 15◦ 30◦ 45◦ 60◦ 75◦

Average
a 1.2769934e-3 1.2683230e-3 1.2465397e-3 1.2196049e-3 1.2045996e-3
b 2.9153695e-3 2.9152299e-3 2.9288445e-3 2.9022565e-3 2.9024912e-3
c 62.610505e-3 62.837393e-3 63.721774e-3 63.824265e-3 64.258455e-3

Amplitude
a 0.0 1.2709626e-5 2.6523662e-5 3.4000452e-5 4.1202191e-5
b 0.0 2.1414979e-5 3.0160779e-5 7.2562722e-5 11.723375e-5
c 0.0 9.0128400e-5 4.3497037e-5 84.795348e-5 170.37206e-5

Height correction
aht 2.53e-5
bht 5.49e-3
cht 1.14e-3

Table 5.3: Coefficients of the wet mapping function.

Coefficient Latitude (ϕ)

ξ 15◦ 30◦ 45◦ 60◦ 75◦

a 5.8021897e-4 5.6794847e-4 5.8118019e-4 5.9727542e-4 6.1641693e-4
b 1.4275268e-3 1.5138625e-3 1.4572752e-3 1.5007428e-3 1.7599082e-3
c 4.3472961e-2 4.6729510e-2 4.3908931e-2 4.4626982e-2 5.4736038e-2

This tropospheric model is implemented in the gLAB software tool for
PPP. It is also provided in program mapp niell.f given in Volume II.
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5.5 Carrier Phase Wind-up Effect

Wind-up affects only the carrier phase measurements, not the code pseudo-
ranges (see the term λi ω in equation (5.1)). It is due to the electromagnetic
nature of circularly polarised waves, intrinsic to the GNSS (GPS, Glonass,
Galileo, Beidou) signals. This correction is required only for high-accuracy
positioning (e.g. PPP).

The wind-up effect on phase measurements depends on the relative ori-
entation of the satellite and receiver antennas, and the direction of the line
of sight.

For a receiver with fixed coordinates, the wind-up is due to the satellite’s
orbital motion. As the satellite moves along its orbital path it must perform
a rotation to keep its solar panels pointing towards the Sun in order to
obtain the maximum energy while its antenna keeps pointing towards the
centre of Earth. This rotation causes a phase variation that the receiver
misunderstands as a range variation.

The wind-up correction (ω ≡ ∆Φ) due to the satellite’s motion can be
computed from the expressions derived by [Wu et al., 1993] for a crossed
dipole antenna:

∆Φ = δφ+ 2Nπ (5.71)

where δφ is the fractional part of a cycle given by

δφ = sign(ζ) arccos

(
d′ · d
‖d′‖ ‖d‖

)
, with ζ = ρ̂

(
d′ × d

)
(5.72)

and N is an integer number given by

N = nint

[
∆Φprev − δφ

2π

]
(N can be initialised as zero) (5.73)

where ∆Φprev is the previous value of the phase correction, nint stands for
the nearest integer and d, d′ are two effective dipoles for the receiver and
transmitter:

d = â − ρ̂(ρ̂ · â) + ρ̂× b̂

d′ = â′− ρ̂(ρ̂ · â′)− ρ̂× b̂′
(5.74)

where the unit vectors â, b̂, â′, b̂′ and ρ̂ are defined in Fig. 5.19 and below.
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Figure 5.19: Layout of dipole

orientation for computing the

wind-up.
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Figure 5.20: Carrier phase wind-up: range and position domain effect. Left and middle panels show the horizontal and vertical

positioning error, respectively, using (blue) or not using (red) the carrier wind-up correction, equation (5.71). The wind-up

effect on the range is shown in the right panel. See exercise 2b of session 5.2 in Volume II.

Continuity between consecutive phase observations must be ensured by
adding full-cycle terms of ±2π to the correction (5.71).

Receiver coordinate system, â, b̂: The local East North Up (ENU)
coordinates can be used for the receiver, and the orthogonal unit
vectors â and b̂ can be defined as pointing to the east and north.

Satellite coordinate system, â′, b̂′: The satellite-fixed coordinate
(x′, y′, z′) frame of section 5.6.3 can be used for the satellite, and
the orthogonal unit vectors â′ and b̂′ can be defined as pointing in
the î and ĵ directions, defined by equations (5.78) and (5.77), respec-
tively.33

Line-of-sight vector ρ̂: This is a unit vector pointing from the satellite
to the receiver.

Due to the carrier phase ambiguity, the value of N can be chosen arbitrarily
at the beginning of a phase tracking session, but usually is taken as zero
(i.e. it is assimilated into the unknown carrier phase ambiguity).

The wind-up correction is implemented in gLAB.

Figure 5.20 illustrates the effect of the carrier wind-up correction for
the same example as in Fig. 5.23 (kinematic PPP). The solution computed
using the wind-up correction is shown in blue and the solution without this
correction in red. The wind-up effect on the range is shown in the plot on
the right.

33The planetary ephemerides are usually given in the CRS reference frame (i.e. relative
to the Aries direction. Nevertheless, given the low accuracy required for these computa-
tions (only to compute the unit vectors), a simple rotation R3[−θ] of sidereal time θ is
enough to transform the CRS coordinates to the TRS (see section 3.1.2).
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L2 APC (0.1159 m)

L1 APC (0.0854 m)

ARP (0.0000 m)

0.3794 m

Figure 5.21: Layout of a Dorne

Margolin T antenna. The

Antenna Phase Centre (APC)

offsets for L1 and L2 signals and

the Antenna Reference

Point (ARP) are indicated in the

figure.

5.6 Antenna Phase Centre Correction

As in the previous section, the corrections outlined below are required only
for PPP.

5.6.1 Antenna Phase Centre

The GNSS measurements are referred to the so-called antenna phase centre
(satellite and receiver). The position of the antenna phase centre is not
necessarily the geometric centre of the antenna. Indeed, it is not constant,
but depends on the direction of the incoming radio signal.

The phase centre is defined as the apparent source of radiation. If the
source were ideal it would have a spherical equiphase contour, but the real
case is slightly different, because the equiphase contour is irregular and
each segment has its own apparent radiation origin.

Moreover, the phase centre of an antenna not only is angle dependent
(elevation and azimuth), but also depends on the signal frequency. A sim-
ple model is to assume that the phase centres differ only on the vertical
axis of the antenna, see Fig. 5.21. Manufacturers include technical sheets
indicating the phase centre offsets.

Antenna phase centre corrections for different models of receivers, rel-
ative to the AOA Dorne Margolin T (AOAD/M T) antenna,34 were com-
piled by IGS and are available from ftp://igscb.jpl.nasa.gov/igscb/station/
general/igs 01.pcv. These files35 include North East Up (NEU) offsets of
the phase centre location and Phase Centre Variation (PCV) as a func-
tion of the elevation angle over 10◦. They were determined using short-
baseline field measurements taking the AOAD/M T antenna as a reference
[Gendt, G. and Schmid, R., 2005]. Nevertheless, as shown by [Mader, 1999],
on long baselines the relative PCVs are not adequate, even for the same
antenna model.

On 5 November 2006, IGS switched from relative to absolute antenna
phase centre corrections, which took place together with the adoption of
ITRF2005 [Gendt, G. and Schmid, R., 2005]. The absolute antenna phase
centre offsets and PCVs are determined by a robotic system developed

34The IGS station network was initially dominated by AOA Dorne Margolin chokering
antenna models.

35See http://igscb.jpl.nasa.gov/igscb/station/general/igs 01.txt.
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at the University of Hanover and the company Geo++ (see
http://www.geopp.de). They include azimuthal values and elevations down
to 0◦. IGS is compiling a consistent set of absolute antenna phase centre
corrections for both receiver networks and satellites, which are provided in
so-called Antenna Exchange Format (ANTEX) files.36

Since 5 November 2006 (GPS week 1400) the IGS products, that is Stan-
dard Product #3 (SP3) files37 with the GPS and Glonass precise orbits and
clocks, etc., and the Solution (Software/technique) INdependent EXchange
format (SINEX) files with the computed precise coordinates of the reference
station network, have been associated with the ANTEX files for absolute
antenna phase centre corrections (offsets and PCVs). It must be pointed
out that users should not mix absolute and relative PCVs. Moreover, ab-
solute PCVs require corrections for both satellite and receiver antennas.

5.6.2 Receiver Antenna Phase Centre and Antenna Reference
Point

The measurements are referred to the Antenna Phase Centre (APC) po-
sition. As this location is frequency dependent, a point tied to the base
of the antenna is used as a more suitable reference. This point is called
the Antenna Reference Point (ARP). As mentioned above, manufacturers
provide technical information on the APC position relative to the ARP.
On the other hand, as also already mentioned, relative and absolute APC
corrections have been compiled by IGS and are provided in the PCV and
ANTEX files respectively for several antenna models.

Finally, in geodetic positioning, the receiver coordinates are referred to
a Monument Marker (MM) or an external Benchmark (BM). Figure 5.22
illustrates this.

Figure 5.22: Layout of a

permanent receiver site showing

the MM, ARP and APC.
(vector (N/E/U))APC

Antenna Phase Centre (APC)

(vector (U/E/N))ARP

Antenna Reference Point (ARP)

Monument Marker (MM)

Benchmark (BM)

Geocentre

r M
=

 (
X

,Y
,Z

)

36See ANTEX format at http://www.epncb.oma.be/ftp/station/general.
37A reference to the satellite antenna phase centres used is indicated in the header of

the SP3 files.
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5. Measurement Modelling

Figure 5.23: Receiver APC: range and position domain effect. Left and middle panels show the horizontal and vertical positioning

error, respectively, using (blue) or not using (red) the receiver’s APC correction. The variation in range is shown in the right

panel. As the APC vector is along the vertical axis, its effect is a displacement in the vertical component. See exercise 2e of

session 5.2 in Volume II.

In the IGS SINEX files, the computed coordinates for the MM are given
in the block ‘SOLUTION/ESTIMATE’, in ECEF coordinates, for each pro-
cessed station. The position of the ARP relative to the MM, or the site
eccentricity vector, is given in the block ‘SITE/ECCENTRICITY’ in UNE
(Up, North, East) coordinates. Finally, the APC offsets for the different
frequencies and the antenna calibration model (e.g. ANTEX file) are given
in the ‘SITE/GPS PHASE CENTER’ block of data.38

Let rM be the position of the MM in an ECEF reference frame. Let
∆ARP be the offset vector defining the ARP position relative to the MM,
and ∆APC the offset vector defining the APC position relative to the ARP.
Thus the receiver’s APC position r, in an ECEF reference frame, is given
by39

r = rM + ∆ARP + ∆APC (5.75)

The receiver’s phase centre offset correction, using the ANTEX file format,
and the ARP correction are implemented in gLAB.

Figure 5.23 shows an example of the effect of APC correction in the
positioning domain (left and middle plots) and range domain (right plot).
The solution computed using the APC correction is shown in blue and that
without in red. The projection in range of the APC offset is shown in the
plot on the right. The results correspond to an Ashtech-ZXII3 receiver with
an ASH70093D M antenna, located at coordinates ϕ = 30◦36m, λ = 34◦45m

(Israel), on 2 May 2000 and positioned in kinematic PPP mode.

38See the SINEX format at http://www.iers.org/MainDisp.csl?pid=190-1100110.
SINEX files can be found at ftp://cddis.gsfc.nasa.gov/pub/gps/products.

39Note that, as commented earlier, ∆APC is a frequency-dependent correction. Equa-
tion (5.81) below gives the correction ∆APCLC from the L1, L2 APC vectors.
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5.6.3 Satellite Antenna Phase Centre

The broadcast ephemerides are referred to the satellite’s APC (of the
ionosphere-free combination signal, see equation (5.81)) in an ECEF refer-
ence frame (see [GPS/SPS-SS, 1995], [GLONASS ICD, 2008]) and, there-
fore, no additional correction is needed when using the navigation message.
Nevertheless, the precise orbits and clocks are referred to the Satellite Mass
Centre (MC), thus it is necessary to account for the phase centre offset vec-
tor when these products are used. This offset is given in a satellite-fixed
coordinate frame, defined by the unit vectors (̂i, ĵ, k̂) as follows:

• k̂ is the unit vector pointing from the MC to the centre of Earth.
This vector can be computed as

k̂ = − rsatMC

‖ rsatMC ‖
(5.76)

where rsatMC are the MC coordinates in the ECEF reference frame
used for the SP3 file, for example IGS05.

• ĵ is the resulting unit vector of the cross-product of the k̂ vector with
the unit vector from the satellite to the Sun. That is,

ĵ = k̂× ê, with ê =
rsun − rsatMC

‖ rsun − rsatMC ‖
(5.77)

where the rsun vector can be computed from the planetary epheme-
rides.40

• î completes the right-handed system

î = ĵ× k̂ (5.78)

Thus, if ∆APC is the APC offset in the satellite-fixed (̂i, ĵ, k̂) system, the
satellite APC coordinates in the ECEF frame are

rsatAPC = rsatMC + R ·∆APC (5.79)

where

R =
[
î ĵ k̂

]
(5.80)

Note that the APCs (∆APCL1
, ∆APCL2

) are frequency dependent as
shown in Fig. 5.21. The APC offset in the ionosphere-free combination (see
equation (4.4)) is given by

∆APCLC
=
f2

1 ∆APCL1
− f2

2 ∆APCL2

f2
1 − f2

2

(5.81)

From 29 November 1998 (GPS week 986) to 4 November 2006 (GPS
week 1400), the IGS products used the APC offsets given in Table 5.4 for
the ionosphere-free combination (∆APCLC

).

40Simplified expressions for solar coordinates can be found, for instance, in
[Montenbruck and Eberhard, 2005] or in [GLONASS ICD, 1998]. The equations from
Glonass-ICD are implemented in program sub Sun pos GLO.f in Volume II.
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Table 5.4: ∆APCLC of GPS satellite used by IGS until 4 November 2006.

Block î ĵ k̂
I 0.210m 0.000m 0.854m

II/IIA 0.279m 0.000m 1.023m
IIR 0.000m 0.000m 0.000m

From 5 November 2006, IGS has used different APC vectors (∆APC)
even within the same GPS satellite block. These values are derived from
an absolute calibration of the APC corrections (offset and PCVs, see section
5.6.1), for GPS and also for Glonass satellites.

Table 5.5 shows an example of ∆APCLC
values for Glonass satellites pro-

vided in the IGS ANTEX files.

Table 5.5: Examples of ∆APCLC for Glonass satellites.

Orb. slot #GC î ĵ k̂
01 796 0.000m 0.000m 1.9444m
04 795 0.000m 0.000m 2.0061m
05 711 0.000m 0.000m 1.9141m
06 701 −0.545m 0.000m 2.1947m
07 712 −0.545m 0.000m 2.3232m

02,03,08–22 . . . −0.545m 0.000m 2.3000 m
23 714 −0.545m 0.000m 2.2772m
24 713 −0.545m 0.000m 2.3253m

The APC corrections model (i.e. ANTEX file) associated with each pre-
cise satellite orbit and clock SP3 file is indicated in the file header.

The APCs associated with the GPS broadcast orbits and clocks can be
found at http://earth-info.nga.mil/GandG/sathtml/, from the NGA. An
example is given in Table 5.6 (see the full table in Appendix F).

The satellite phase centre offset correction, using the ANTEX file format,
is implemented in the gLAB software tool for PPP.

Figure 5.24 illustrates the effect of the satellite APC correction for the
same example as in Fig. 5.23 (kinematic PPP). The navigation solution
computed with the APC correction (∆APC) is shown in blue and the solu-
tion without in red. The projection in range of the satellite APC offset is
shown in the second row on the left.
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Table 5.6: ∆APCLC of GPS satellites used for broadcast orbits and clocks.

Block PRN î ĵ k̂
II 0.2794 0.0000 0.9519
IIA 0.2794 0.0000 0.9519
IIR 02 −0.0099 0.0061 −0.0820
IIR 11 0.0019 0.0011 1.5141
IIR 19 −0.0079 0.0046 −0.0180
IIR 23 −0.0088 0.0035 0.0004

IIR-M 01 0.012 45 −0.000 38 −0.022 83
IIR-M 17 −0.009 96 0.005 99 −0.100 60
IIR-M 29 −0.010 12 0.005 91 −0.015 12
IIR-M 31 0.001 60 0.000 33 −0.057 50

5.7 Earth Deformation Effects Modelling

The receiver station coordinates are affected by tidal motions, which must
be accounted for when high accuracy is required. It is important to point
out that these effects do not affect GNSS signals, but if the tidal effects
were not considered, the station coordinates would oscillate in relation to
a mean value as a consequence of these effects.

The main reasons why Earth’s crust varies and modifies the coordinates
of the receiver’s location are summarised in the next sections under the
headings of solid tides, ocean loading and pole tide. The equations for
computing the vector of tidal displacements for each one of these effects
(∆rsol, ∆rocn and ∆rpol) are given as follows. After computing each tidal
displacement, the receiver’s location is given by

rM = rM0 + ∆rsol + ∆rocn + ∆rpol (5.82)

where rM0 are the MM coordinates free of tidal displacements and rM is
given by equation (5.75).

Figure 5.24: Satellite APC: range and position domain effect. Left and middle panels show the horizontal and vertical positioning

error, respectively, using (blue) or not using (red) the satellite APC correction. The variation in range is shown in the right

panel. The ∆APC values of Table 5.4 have been used (data set collected in year 2002). See exercise 2d of session 5.2 in

Volume II.
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5.7.1 Solid Tides

These concern the movement of Earth’s crust (and thus the variation in
the receiver’s location coordinates) due to gravitational attractive forces
produced by external bodies, mainly the Sun and Moon. Solid tides produce
vertical and horizontal displacements that can be expressed by the spherical
harmonics expansion (m,n), characterised by the Love and Shida numbers
hmn and lmn.

A simplified model for the tidal displacement, to a few millimetres
of accuracy, is given by the following expression (from the IERS Con-
vention’s degree 2 tides displacement model – in-phase corrections; see
[McCarthy and Petit, 2004], page 79):

∆rsol =

3∑
j=2

GMj R
4
E

GME R3
j

{
h2 r̂

(
3

2
(R̂j · r̂)2 − 1

2

)
+ 3 l2 (R̂j · r̂)

[
R̂j − (R̂j · r̂) r̂

]}
(5.83)

where:

∆rsol is a site displacement vector in ECEF Cartesian coordinates

GME is the gravitational parameter of Earth

GMj is the gravitational parameter of the Moon (j = 2) and Sun

(j = 3) (Msun/ME = 332 946.0, Mmoon/ME = 0.012 300 02)

R̂j , Rj are the unit vector from the geocentre to the Moon or Sun

and the magnitude of that vector

RE is the equatorial radius of Earth (RE = 6 378 136.6 m)

r̂, r are the unit vector from the geocentre to the station and

the magnitude of that vector

h2 is the nominal degree 2 Love number (h2 = 0.6078).

l2 is the nominal degree 2 Shida number (l2 = 0.0847).

Note that the radial (not vertical) component (r̂) is proportional to the
Love number h2, while the terms in l2 correspond to components orthogonal
to the radial direction (not the horizontal plane).

A small correction for geocentric latitude φ dependence can be consid-
ered in the h2 and l2 values of equation (5.83), according to the expressions

h2 = 0.6078− 0.0006
[
(3 sin2 φ− 1)/2

]
l2 = 0.0847 + 0.0002

[
(3 sin2 φ− 1)/2

] (5.84)

An additional refinement is to take into account the extra contribution
due to the degree 3 tides ([McCarthy and Petit, 2004], page 80):

∆rsol =
∑3

j=2
GMj R

5
E

GME R
4
j

{
h3 r̂

(
5
2(R̂j · r̂)3 − 3

2(R̂j · r̂)
)

+ l3

(
15

2
(R̂j · r̂)2 − 3

2

)[
R̂j − (R̂j · r̂) r̂

]} (5.85)

where h3 = 0.292 and l3 = 0.015. Only the Moon’s contribution (j = 2)
needs to be computed, because the contribution of the Sun (j = 3) is negli-
gible. However, the Moon’s contribution to this degree 3 tide in the radial
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Figure 5.25: Solid tides: range and position domain effect. Left and middle panels show the horizontal and vertical positioning

error, respectively, using (blue) or not using (red) the solid tides correction (from equations (5.83) to (5.85)). The effect on

range of the solid tides displacement is shown in the right panel. See exercise 2c of session 5.2 in Volume II.

displacement does not exceed 1.7 mm in radial and 0.02 mm in transversal
components.

Finally, it must be taken into account that the previous equations pro-
vide the correction to obtain the coordinates relative to the ‘conventional
tide-free’ position. To obtain the position relative to the ‘mean tide’ the
following vector must be added:41

[−0.1206 + 0.0001P2(sinφ)]P2(sinφ) (m) radial direction

[−0.0252 + 0.0001P2(sinφ)] sin 2φ (m) north direction
(5.86)

where P2(sinφ) = (3 sin2 φ− 1)/2.

Note that the radial component of this part can amount to about −12 cm
at the poles and about +6 cm at the equator.42

The previous equations (5.83), (5.84) and (5.85) – but not (5.86) – im-
plementing the in-phase degree 2 and 3 tides are coded in the gLAB software
tool.

The FORTRAN code dehanttideinel.f implementing the full IERS
Convention’s Solid-Tides Model is available at http://www.usno.navy.mil/
USNO/earth-orientation/eo-info/general/conv1996/dehanttideinel.f.43

Figure 5.25 illustrates the effect of the solid tides correction for the same
example as in Fig. 5.23 (kinematic PPP). The navigation solution computed
with the solid tides correction is shown in blue and the solution without
in red. The effect of the solid tides displacement on range is shown in the
second row on the left.

41According to the IERS conventions (see [McCarthy and Petit, 2004], pages 9–10 and
83), the (degree 2 zonal) tidal potential contains a time-independent (i.e. permanent)
part, which is included in the geoid definition. Thus, the ‘mean tide’ position is obtained
after removing this part from the tidal displacement. This is done by adding the vector
expression (5.86) to the tidal displacement computed from equation (5.83).

42Resolution 16 of the 18th IAG General Assembly (1983) recommended the use of
mean tide values for quantities associated with station displacements. “This recom-
mendation, however, has not been implemented in the algorithms used for tide mod-
elling by the geodesy community in the analysis of space geodetic data in general”, see
[McCarthy and Petit, 2004] page 10.

43The permanent tidal deformation restitution (i.e. equation (5.86) to obtain the ‘mean
tide position’ from the ‘conventional tide-free’ position) is deactivated in this software
code (see details in file dehanttideinel.f header).
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5.7.2 Ocean Loading

This is a secondary tidal effect, due to the elastic response of Earth’s crust
to ocean tides, producing deformation of the sea floor and a surface dis-
placement of the adjacent land.

Ocean loading is more localised than solid tides and for convention it
does not have a permanent part. For kinematic PPP at an accuracy of a
few centimetres, or a few millimetres for static PPP over 24 h and/or far
from the oceans, it can be neglected [Kouba and Héroux, 2000].

A model for ocean loading is described in the IERS Convention’s doc-
ument [McCarthy and Petit, 2004], page 73, a simplified version of which
can be summarised as44

∆rocn =
∑
j

fjAcj cos (ωjt+ χj + uj − Φcj) (5.87)

where:

∆rocn is the site displacement vector in (radial, west, south)

coordinates

j represents 11 tidal waves: M2, S2, N2, K2, K1, O1, P1, Q1,

Mf , Mm, Ssa
fj , uj depend on the longitude of the lunar node

ωj is the tidal angular velocity at time t = 0h

χj is an astronomical argument at time t = 0h

Acj is a station-specific amplitude

Φcj is a station-specific phase.

The FORTRAN code HARDISP.f implementing the full IERS Conven-
tion’s Solid-Tides Model is available at ftp://tai.bipm.org/iers/convupdt/
chapter7/hardisp. This routine computes time series of tidal displacements
from an input file containing the ocean loading coefficients for a given sta-
tion. These coefficients can be obtained from the ocean loading service by
request from the website http://holt.oso.chalmers.se/loading/index.html.

This secondary tidal effect is not implemented in the gLAB tool.

5.7.3 Pole Tide

As mentioned in section 3.1.2, Earth’s instantaneous axis of rotation shifts
inside a square of about 20 m side in relation to a point with fixed coor-
dinates on Earth (i.e. the Chandler wobble with a period of 14 months).
This entails a varying elastic response in Earth’s crust. This has an effect
of less than 2.5 cm in the vertical and 0.7 cm in the horizontal direction, but
must be taken into account if the observations are carried out over periods
longer than two months.

From the IERS Conventions [McCarthy and Petit, 2004], page 84, the
following expression45 can be derived for the displacement at a point of

44Additional information describing the model of GIPSY-OASIS II can be found in
[Webb and Zumberge, 1993].

45Note the use of latitude φ in equations (5.88) and (5.89), instead of the co-latitude
θ used in the IERS equations.
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geocentric latitude φ and longitude λ:

δr̂ = −
ω2
E RE
2 g

h sin 2φ (m1 cosλ+m2 sinλ) r̂

δλ̂ = −
ω2
E RE
g

l sinφ (−m1 sinλ+m2 cosλ) λ̂

δφ̂ = −
ω2
E RE
g

l cos 2φ (m1 cosλ+m2 sinλ) φ̂

(5.88)

where (m1,m2) are the displacements (in metres) from the 1903.0 Conven-
tional International Origin (CIO), pole position, and h = 0.6027, l = 0.0836
are the Love numbers.

Using Earth’s angular rotation ωE = 7.29·10−5 rad/s, Earth’s equatorial
radius RE = 6 378 · 103 m and the gravitational acceleration g = 9.8 m/s2,
it follows that

δr̂ = −32 sin 2φ (x1 cosλ+ x2 sinλ) r̂ (mm)

δλ̂ = −9 sinφ (−x1 sinλ+ x2 cosλ) λ̂ (mm)

δφ̂ = −9 cos 2φ (x1 cosλ+ x2 sinλ) φ̂ (mm)

(5.89)

where (x1, x2) are the displacements in seconds of arc (mi = xiREπ/648000).
Pole displacements can be found at ftp://hpiers.obspm.fr/iers/eop.

The displacement δ is given by the radial, longitudinal and latitudi-
nal vectors (r̂, λ̂, φ̂) (positive upwards, eastwards and northwards, respec-
tively). Thus, the displacement vector ∆rpol in the (x, y, z) ECEF Cartesian
coordinates is given by

∆rpol = R3(−λ) ·R2(φ) · δ (5.90)

where R3(−λ) · R2(φ) are the rotations in latitude (1) and longitude (2)
indicated in Fig. 5.26 (see also section B.2.1). This short tidal effect is not
implemented in the gLAB tool.

Figure 5.26: Transformation

from UEN (̂r, λ̂, φ̂) to ECEF

(x , y , z) coordinates.
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6. Solving Navigation Equations

6. Solving Navigation Equations

This chapter is devoted to estimating the receiver’s position. In particular,
it focuses on: (1) single-frequency code-based point positioning, hereafter
SPP; and (2) dual-frequency code and carrier-based PPP. These two topics
are complemented with a brief section on carrier phase ambiguity fixing in
differential and undifferenced mode.

As the measurements are noisy (receiver noise, multipath) and the ap-
plied models are not perfect, adjustment and filtering techniques are needed
for parameter estimation. It is beyond the scope of this book to go into the
fundamentals of parameter estimation, since the least squares solution or
Kalman filtering is presented only from ‘instrumental usage’ point of view.

6.1 Basic Concepts: Code-Based Positioning

The aim is to determine the receiver coordinates r = (x, y, z) and clock
offset δt from pseudorange measurements R of at least four satellites in
view. As explained in the first chapter, the positioning principle is based
on solving a geometric problem (see Chapter1) from the measured ranges
to the satellites, with known coordinates. The satellite coordinates can be
computed from the broadcast message, which also provides all the necessary
information for modelling the measurements for the Standard Positioning
Service (i.e. the SPP).

From the code pseudorange measurements Rj for n ≥ 4 satellites

Rj = ρj + c(δt− δtj) +Trj + α̂1 I
j + TGDj +Mj +εj , j = 1, . . . , n (6.1)

(see equations (5.1) and (5.20)), the following measurement equation sys-
tem can be written,1, neglecting the multipath and receiver noise terms:

Rj −Dj '
√

(xj − x)2 + (yj − y)2 + (zj − z)2 + c δt, j = 1, . . . , n (6.2)

where the left-hand side contains the measurements Rj and all modelled
terms Dj = −c δtj+Trj+α̂1 I

j+TGDj , see equations (5.16), (5.60), (5.54)
and (5.20). The right-hand side contains the four unknown parameters: the
receiver coordinates (x, y, z) and the receiver clock offset δt.

Equations (6.2) define a nonlinear system, whose usual resolution tech-
nique consists of linearising the geometric range ρ in the neighbourhood of
a point (x0, y0, z0) corresponding to the approximate position of a receiver
(see Fig. 6.1).

1The unknown receiver DCB K21,rcv is included in the receiver clock term δt.
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Figure 6.1: Geometric concept

of GNSS positioning: Equations

are linearised about the

approximate receiver coordinates

(x0, y0, z0). The correction

(dx , dy , dz) is estimated

after solving the navigation

equations (Eq. 6.6).
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j
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Then, linearising the satellite–receiver geometric range

ρj(x, y, z) =
√

(xj − x)2 + (yj − y)2 + (zj − z)2 (6.3)

gives, for the approximate solution r0 = (x0, y0, z0),

ρj = ρj0 +
x0 − xj

ρj0
dx+

y0 − yj

ρj0
dy +

z0 − zj

ρj0
dz

with dx = x− x0, dy = y − y0, dz = z − z0

(6.4)

Substituting (6.4) in (6.2), we can rewrite the measurement equations
as a linear system (where Rj can be either smoothed or unsmoothed code)

Rj − ρj0 −Dj =
x0 − xj

ρj0
dx+

y0 − yj

ρj0
dy +

z0 − zj

ρj0
dz + c δt, j = 1, . . . , n

(6.5)

The previous system for the navigation equations2 is written in matrix
notation as R1 − ρ1

0 −D1

...

Rn − ρn0 −Dn

 =


x0−x1

ρ1
0

y0−y1

ρ1
0

z0−z1

ρ1
0

1

...
...

...
x0−xn
ρn0

y0−yn
ρn0

z0−zn
ρn0

1



dx

dy

dz

c δt

 (6.6)

In general, an over-determined system is obtained (for n > 4), which
can be solved using the least squares adjustment. See exercise 7 of session
5.2 in Volume II.

After solving the equation system (6.6), the estimate of the receiver
coordinates is  x

y

z

 =

 x0

y0

z0

+

 dx

dy

dz

 (6.7)

2Strictly speaking, this system corresponds to the case where the satellite coordinates
at emission time have been calculated using the pseudorange algorithm described on
page 98. When the purely geometric algorithm on page 99 is used, the elements of the
associated matrix (design matrix or Jacobian) vary slightly (see details in Appendix E,
page 200).
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6. Solving Navigation Equations

Equations (6.2) can be linearised again about these new estimates (6.7)
of the receiver’s position, and the solution can be iterated until the change
between two consecutive iterations is below a given threshold. Typically,
the iterations converge quickly, in a few iterations, even if starting with
(x0, y0, z0) = (0, 0, 0), that is Earth’s centre.

Equations (6.6) will be called the navigation equations system and can
be written in compact form as

y = G x (6.8)

where the vectors and matrix involved can be defined as follows:

Prefit residuals: y is an (n× 1) vector containing the residuals between
the measured and predicted pseudoranges, ‘before fitting’ the param-
eters (dx, dy, dz, δt) to the linear model.

Geometry matrix: G is an (n×4) matrix containing the receiver–satellite
geometry.3 Notice that the first three elements of each row
(j = 1, . . . , n) are the components of the unitary line-of-sight vector

ρ̂j0 = −(x0 − xj , y0 − yj , z0 − zj)/||(x0 − xj , y0 − yj , z0 − zj)||

Unknown parameters: x is a (4 × 1) vector containing the deviation
(dx, dy, dz) between the true and approximate coordinates, and the
receiver clock offset δt.

6.1.1 Parameter Adjustment

Equation (6.8) was written neglecting the measurement noise and mismod-
elling (see equation (6.1)). If such errors (ε) are explicitly written, then
the linear model is as follows:

y = G x + ε (6.9)

where the error term ε is only known from some statistical properties,
usually the mean m = E[ε] and covariance matrix R = E[ε εT ].

Due to the error term ε, in general equation (6.9) defines an incompatible
system (i.e. there is no ‘exact’ solution fulfilling the system). In this context,
the parameters’ solution can be taken as the vector x̂ that minimises the
discrepancy in the equation system. That is, the vector x̂ provides the ‘best
fit’ of y ' G x̂ in a given sense.

A common criterion used in GNSS is the least squares adjustment, which
is defined by the condition

min ‖y − ŷ‖2 = min

[
n∑
i=1

(yi − ŷi)2

]
where ŷ = G x̂

(6.10)

3The matrix G can be computed in ENU coordinates instead of XYZ as in equa-
tion (6.6). In this local system the rows are [− cos eli sin azi,− cos eli cos azi,− sin eli, 1],
where eli and azi are the elevation and azimuth angles of satellite i observed from the
receiver’s position (see equation (B.14)).
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The discrepancy vector between the measurements y and the fitted model
(i.e. ŷ = G x̂) is usually called the postfit residual vector:

r = y − ŷ = y −G x̂ (6.11)

Thus, the least squares estimator solution defined by equation (6.10) gives
the vector x̂ that minimises4 the residual quadratic norm ||r||2.

From the basic results of linear algebra, it follows that the solution
fulfilling condition (6.10) is given by

x̂ = (GT G)−1GT y (6.12)

Substituting equations (6.12) and (6.9) in (6.11), the postfit residual vector
is

r =
[
I−G(GT G)−1GT

]
y = S y = S ε

where S is a symmetric and idempotent (projection) matrix

S = I−G(GT G)−1GT , ST = S, S2 = S, r = S y⊥ ŷ

(6.13)

From equations (6.12) and (6.9) the error of the estimate can be written as

x̂− x = (GT G)−1GT ε (6.14)

Assuming that the prefit residuals have mean zero errors (E[ε] = 0) and
covariance matrix R, then the mean error, covariance matrix and Mean-
Square Error (MSE) of the estimate are given by

m = E[x̂− x] = (GT G)−1GT E[ε] = 0

P = E[(x̂− x) (x̂− x)T ] = (GT G)−1GT E[ε εT ] G(GT G)−1

= (GT G)−1GT R G(GT G)−1

MSE = E[(x̂− x)T (x̂− x)] = tr(P)

(6.15)

The last two expressions become simpler by assuming uncorrelated values
with identical variance σ2. That is, by taking R = E[ε εT ] = σ2 I, then

P = σ2 (GT G)−1 , MSE = σ2 tr[(GT G)−1] (6.16)

6.1.1.1 Weighted Least Squares (WLS) Solution

In the least squares fit of equation (6.10) all measurements have been
treated in the same way. Nevertheless, in a real scenario not all the mea-
surements have the same quality, that is the same error. For instance, mea-
surements at low elevation have larger multipath error than measurements
at high elevation (see Fig. 4.5), or the modelling errors due to the tropo-
spheric or ionospheric mapping functions are larger at lower elevations, as
well.

4Equation (6.10), in which a quadratic sum is minimised, could be interpreted in
physical terms as minimising the energy of the error fit. Thus the estimate x̂ can be seen
as an equilibrium solution.
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6. Solving Navigation Equations

The measurement quality can be incorporated into the fitting criterion
(6.10) by introducing a symmetric, positive-definite weighting matrix W
and redefining the ‘best fit’ of equation (6.10) as the condition5

min ‖y − ŷ‖2

W
(6.17)

where the norm of the residual vector r = y − ŷ to be minimised is, now,
associated with the scalar product defined by the weighting matrix W.

With this weighting criterion, estimator x̂W and its covariance matrix
PW become

x̂W = (GT W G)−1GT W y (6.18)

PW = (GT W G)−1GT W R W G(GT W G)−1 (6.19)

6.1.1.2 Best Linear Unbiased Minimum Variance Estimator

The weighting matrix W was introduced in the previous section as a way
to account for the different quality of the data in the adjustment problem,
but no criteria were given to define this matrix.

To this end, we can note that equations (6.18) and (6.19) are simplified
when we take the weighting matrix W as the inverse of the covariance
matrix R. That is, when

W = R−1 (6.20)

Then equations (6.18) and (6.19) become

x̂ = (GT R−1 G)−1GT R−1 y (6.21)

P = (GT R−1 G)−1 (6.22)

Using a different approach, it can be shown (see for instance
[Tapley et al., 2004] or [Bierman, 1976]) that this solution corresponds to
the Best Linear Unbiased Minimum Variance Estimator (BLUE).

The minimum variance criterion is widely used because of its simplicity.
It has the advantage that a complete statistical description of the random
errors is not required. Rather, only the first- and second-order statistics
for the measurement error are needed6 (i.e. E[ε] = 0, R = E[ε εT ]).

Unfortunately, the characterisation of measurement error is very diffi-
cult and even the covariance matrix is not usually known. A simplifica-
tion commonly used is to assume that the measurements (prefit residuals

5Note that, if W is a diagonal matrix, then the norm ‖y − ŷ‖
2

W
=
∑

wi(yi − ŷi)2,

where the terms in the sum are weighted by the diagonal elements wi. Thus, it fol-
lows that the measurements associated with large wi values will contribute more to the
adjustment.

6The minimum variance estimate (6.21) gives the maximum likelihood estimate when
the observation errors are assumed to be distributed normally with zero mean and co-
variance R.
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y = (y1, . . . , yn)T ) from the different satellites are uncorrelated. Then, the
weighting matrix W becomes

W = R−1 =

 1/σ2
y1

. . .

1/σ2
yn

 (6.23)

where σ2
yi comes from the uncertainty of the different error sources (satellite

clocks, ephemeris, ionosphere, troposphere, multipath and receiver noise)

σ2
yi ≡ σ

2
UEREi

= σ2
clki

+ σ2
ephi

+ σ2
ionoi + σ2

tropoi + σ2
mpi + σ2

noisei (6.24)

(see for instance [RTCA-MOPS, 2006]), where UERE stands for User Equiv-
alent Range Error. A simpler model for equation (6.24) is to take just an
elevation-dependent function according to the expression

σyi = a+ b e−elev/c (6.25)

6.1.1.3 Block-wise WLS

Consider two linear [m1 × n], [m2 × n] equation systems sharing the same
unknown parameter vector x:

y1 = G1 x, R1

y2 = G2 x, R2

(6.26)

where R1 and R2 are the covariance matrices of measurement vectors y1

and y2.

The two systems can then be combined into a common [(m1 +m2)× n]
system as [

y1

y2

]
=

[
G1

G2

]
x , R =

[
R1 0

0 R2

]
(6.27)

where no correlation between the two measurement vectors y1 and y2 is
assumed in matrix R.

From equations (6.21) and (6.22), it is easy to show that, by taking
the corresponding augmented matrices y and G, the WLS solution of the
system (6.27) yields

x̂ =
[
GT

1 R−1
1 G1 + GT

2 R−1
2 G2

]−1 [
GT

1 R−1
1 y1 + GT

2 R−1
2 y2

]
(6.28)

P =
[
GT

1 R−1
1 G1 + GT

2 R−1
2 G2

]−1
(6.29)

Recursive computation: From the previous approach, the recursive
computation of estimate x can be written as

P1 =
[
GT

1 R−1
1 G1

]−1

x̂(1) = P1 ·
[
GT

1 R−1
1 y1

]
P2 =

[
P−1

1 + GT
2 R−1

2 G2

]−1

x̂(2) = P2 ·
[
P−1

1 x(1) + GT
2 R−1

2 y2

]
(6.30)
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6. Solving Navigation Equations

Note that, if only the final estimate is desired, it is best not to process
data sequentially using equation (6.30), but instead to apply equa-
tions (6.21) and (6.22) and accumulate the equations without solving
them until the end [Bierman, 1976]. This could be especially useful in
the case of numerical instabilities, because it avoids the propagation
of numerical inaccuracies during the recursive steps.

Constraints: A priori information can be added to the linear sys-
tem (6.26) as constraining equations λ = Ax with a given weight
W = Rλ

−1. Indeed,

y = G x, R

λ = A x, Rλ

(6.31)

6.1.2 Kalman Filter

The principle of Kalman filtering can be roughly summarised as the WLS
solution of the linearised observation system augmented with a prediction
of the estimate as additional equations. The predicted estimate and the
weighted solution are given as follows.

Predicted estimate (from a simple linear model): Let x̂(n− 1) be the
estimate for the (n−1)th epoch; then a prediction for the next epoch
x̂−(n) is computed according to the model7

x̂−(n) = Φ(n− 1) x̂(n− 1)

P−x̂(n) = Φ(n− 1) Px̂(n−1) ΦT (n− 1) + Q(n− 1)
(6.32)

where Φ is called the transition matrix and defines the propagation of
the vector parameter estimate x̂, and Q is the process noise matrix.
Matrix Q allows us, in particular, to add some additional noise to
account for possible mismodelling due to the simple prediction model
used or, almost the same, to an inexact description of the problem in
general.

Weighted solution (from measurements and predicted estimate): Ac-
cording to the approach in section 6.1.1.3, the measurements (i.e.
the linearised observation equations) are combined with the estimate
of the predicted parameters as follows:[

y(n)

x̂−(n)

]
=

[
G(n)

I

]
x(n) P =

 R(n) 0

0 P−x̂(n)

 (6.33)

which is solved like equation(6.27), being the WLS estimate:

Px̂(n) =

[
GT (n) R−1(n) G(n) +

(
P−x̂(n)

)−1]−1
x̂(n) = Px̂(n) ·

[
GT (n) R−1(n) y(n) +

(
P−x̂(n)

)−1
x̂−(n)

] (6.34)
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Figure 6.2: Kalman filter

diagram. Notation: Rk = R(k),

Pk = Px̂(k).
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Figure 6.3: Classical formulation

of Kalman filter.
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The algorithm can be summarised in the scheme shown in Fig. 6.2.8 See
exercise 8 of session 5.2 in Volume II.

Using the relations [Bierman, 1976]

(ACB +D)−1 = D−1 −D−1AMBD−1

M = (BD−1A+ C−1)−1
(6.35)

it can be shown that the previous formulation is algebraically equivalent to
the classical formulation of the Kalman filter given in Fig. 6.3.

6.1.2.1 Some Elemental Examples of Matrix Definitions Φ and Q

The determination of the state transition matrix Φ and process noise matrix
Q is usually based on physical models describing the estimation problem.
For instance, for satellite tracking or orbit determination, they are derived
from the orbital motion equations. Nevertheless, for the purpose of this
book (i.e. SPP and PPP), only very simple formulations are needed. Such
elemental formulations are covered by the following.

7This is a first-order Gauss–Markov model. The dynamic character is established
through the state transition matrix Φ and the noise matrix of the process Q.

8For readers who wish to go deeper into this theme, the book by [Bierman, 1976] is
recommended, especially the chapters relating to the U-D covariance filter and SRIF.
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6. Solving Navigation Equations

6.1.2.1.1 Static Positioning

The state vector to be determined is given by x̂ = (dx, dy, dz, δt) where
the coordinates9 are considered as constants (because the receiver is kept
fixed) and the clock offset can be modelled as white noise with zero mean.
Under these conditions matrices Φ and Q are given by

Φ(n) =


1

1

1

0

 Q(n) =


0

0

0

σ2
δt

 (6.36)

where σdt is the uncertainty in the clock prediction model (for instance,
σdt = 1 ms = 300 km for an unknown clock (i.e. 1 leap millisecond). Note
that the prediction model for the coordinates is exact and, therefore, the
associated elements in matrix Q are null.

6.1.2.1.2 Kinematic Positioning

1. If a vehicle is moving at a high velocity, the coordinates can be mod-
elled as white noise with zero mean, the same as the clock offset:

Φ(n) =


0

0

0

0

 Q(n) =


σ2
dx

σ2
dy

σ2
dz

σ2
δt

 (6.37)

2. If a vehicle is moving at a low velocity, the coordinates can be mod-
elled as a random walk process with its uncertainty growing with
time:

Φ(n) =


1

1

1

0

 Q(n) =


Q′dx∆t

Q′dy∆t

Q′dz∆t

σ2
δt

 (6.38)

6.1.3 Positioning Error

The formal, predicted and measured accuracy concepts are discussed in this
section.

The formal accuracy is a measure of the uncertainty of the estimates,
according to a statistical characterisation of the errors and linear model
used for the position estimate.

The predicted accuracy provides the expected position accuracy based
on a simple statistical description of the measurement errors. Its compu-
tation does not require the measurements, just the standard deviation σ,
and the approximated satellites’ and user’s location coordinates. Thus, it

9We are referring to deviations from nominal values (x0, y0, z0); that is, what is esti-
mated from the navigation equations.
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can be computed at any point and at any time with the almanac, without
needing any measurements.

The measured accuracy is the measure of the true error and must be
assessed with the actual measurements.

6.1.3.1 Formal accuracy

Denoting as Pxx, Pyy, Pzz, Ptt the diagonal elements of matrix P of equation
(6.22), then the standard deviations are the formal errors of the estimated
x, y, z and t components

σx =
√
Pxx, σy =

√
Pyy, σz =

√
Pzz, σt =

√
Ptt (6.39)

These expressions provide a characterisation of the quality of the co-
ordinates and clock estimates (linked to the measurement error model as-
sumed). Thus, they are not the actual errors, just a measure of the uncer-
tainty of the error estimates.

The previous expressions give the errors in ECEF XYZ coordinates.
Nevertheless, it is usually more meaningful to a user to think in terms of
horizontal and vertical position error, or ENU coordinates.

Let R be the transformation matrix (6.40) of ENU coordinates to XYZ
(i.e. whose columns are the unit orthogonal vectors {ê, n̂, û} as expressed
in the XYZ coordinate system at a point of latitude ϕ and longitude λ),
see equation (B.8):

R =

 − sinλ − sinϕ cosλ cosϕ cosλ

cosλ − sinϕ sinλ cosϕ sinλ

0 cosϕ sinϕ

 (6.40)

Hence, Penu = RT Pxyz R is given, where Pxyz is the submatrix of P
containing solely the geometric components.10 From this covariance matrix,
they can be defined as

σEast =
√
Pee, σNorth =

√
Pnn, σUp =

√
Puu (6.41)

For the horizontal error, the following are usually also defined:

σHorizontal =
√
Pee + Pnn (6.42)

It is usual to express the horizontal error in two main directions where
the covariance matrix Penu is diagonal. They define two orthogonal axes,
associated with the minor and major axis of the error ellipse. The major
axis is given by

σHmajor =

√√√√Pee + Pnn
2

+

√(
Pee − Pnn

2

)2

+ P 2
en (6.43)

10The matrix Penu can be obtained directly in ENU coordinates, using the geometry
matrix G computed in ENU coordinates. In this local system the rows of matrix G (of
linear model (6.6)) are [− cos eli sin azi,− cos eli cos azi,− sin eli, 1], where eli and azi are
the elevation and azimuth angles of satellite i observed from the receiver’s position, see
equation (B.14) in Appendix B.
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6.1.3.2 Predicted Accuracy: Dilution Of Precision

As explained earlier, assuming the simple statistical model

m = E[ε] = 0, R = E[ε εT ] = σ2 I (6.44)

the covariance matrix of the error of the estimate is given by equation (6.16)
as

P = σ2 (GT G)−1

This expression depends upon two factors: (1) the variance of the mea-
surements (prefit residuals) σ2; and (2) the geometry matrix (G), which is
linked only to the receiver–satellite ray geometry, see equation (6.6).

The Root Mean Square Error (RMSE) is given by

RMSE =
√

tr(P) = σ
√

tr [(GT G)−1] (6.45)

which means that the trace of matrix (GT G)−1 is a scale factor on σ for
the RMSE.

Note that, as the matrix G does not depend on the measurements,
but only on the geometry, it can be computed from the almanac (because
accurate satellite positions are not needed); that is, it does not require
receiver measurements.

On the basis of this simple approach, the following Dilution Of Precision
(DOP) parameters are defined:

Q ≡ (GT G)−1 =


qxx qxy qxz qxt
qxy qyy qyz qyt
qxz qyz qzz qzt
qxt qyt qzt qtt

 (6.46)

• Geometric Dilution Of Precision:

GDOP =
√
qxx + qyy + qzz + qtt (6.47)

• Position Dilution Of Precision:

PDOP =
√
qxx + qyy + qzz (6.48)

• Time Dilution Of Precision:

TDOP =
√
qtt (6.49)

As in the previous case, using equation (6.40) the submatrix Qxyz of Q
can be transformed to ENU coordinates as Qenu = RT Qxyz R, in order to
define the following:

• Horizontal Dilution Of Precision:

HDOP =
√
qee + qnn (6.50)
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• Vertical Dilution Of Precision:

VDOP =
√
quu (6.51)

Hence, estimations of the expected accuracy are given by

GDOPσ geometric precision in position and time

PDOPσ precision in position

TDOPσ precision in time

HDOPσ precision in horizontal positioning

VDOPσ precision in vertical positioning

where, basically, DOP represents an approximate ratio factor between
the precision in the measurements (σ) and that in positioning. This ratio
is computed only from the satellite–receiver geometry. See exercises 6 and
7 of session 5.2 in Volume II.

6.1.3.3 Measured Accuracy

Let ∆Ei, ∆Ni and ∆Ui be the errors in the east, north and vertical com-
ponents of the ith position estimate sample. The RMS vertical, horizontal
(2D) and 3D errors are defined as11

RMS vertical error =

√√√√ 1

n

n∑
i=1

∆U2
i (6.52)

2D-RMS horizontal error =

√√√√ 1

n

n∑
i=1

(
∆E2

i + ∆N2
i

)2
(6.53)

3D-RMS error =

√√√√ 1

n

n∑
i=1

(
∆E2

i + ∆N2
i + ∆U2

i

)2
(6.54)

Other measures of the quality of the position estimates are:

• 50th or 95th percentiles of horizontal, vertical and 3D errors;

• CEP (Circular Error Probable), as the 50th percentile of horizontal
error
(CEP is defined thus for this chapter only);

• SEP (Spherical Error Probable), as the 50th percentile of 3D error;
and

• 2drms: calculated as twice the 2D-RMS horizontal error given by
(6.53).

Assuming that the position estimates follow a multivariate normal dis-
tribution centred at the true position and the errors in east, north and

11Note that the RMS equals the standard derivation s only when the mean po-
sition error is zero. Indeed, let m = (1/n)

∑n
i=1 xi, RMS =

√
(1/n)

∑n
i=1 x

2
i and

s =
√

(1/n)
∑n
i=1 (xi −m)2; then RMS2 = s2 +m2.
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up components, (E,N,U), are uncorrelated, and assumig σE ' σN and
σU ' 2(σ2

E + σ2
N )1/2, then the following relations can be considered

[Misra and Enge, 2001]:

RMS vertical error ' 0.5× vertical error (95%)

' 2drms

' 0.9× 3D-RMS error

2D RMS error = 0.5× 2drms

' 0.6×horizontal error (95%)

' 1.2×CEP

3D RMS error ' 2.2× 2D-RMS error

' 1.2×horizontal error (95%)

' 1.3×SEP

A wider discussion of accuracy equivalences can be found in [Diggelen, 2007].

6.2 Code and Carrier-Based Positioning

For high-accuracy positioning, the carrier phase must be used, besides the
code pseudorange. As commented in section 4.2, the carrier measurements
are very precise, typically at the level of a few millimetres, but contain
unknown ambiguities which change every time the receiver locks the signal
after a cycle slip. Nevertheless, such ambiguities can be estimated in the
navigation solution, together with the coordinates and other parameters.

6.2.1 Precise Modelling Terms for PPP

The PPP technique allows centimetre-level accuracy to be achieved for
static positioning and decimetre level, or better, for kinematic positioning.12

This high accuracy requires accurate measurement modelling, where all
model terms described in the previous chapter must be taken into account
(up to centimetre level or better).

This modelling involves consideration of the following terms:

Precise satellite orbits and clocks:

The precise orbits and clock files (see section 3.3.3) must be used instead
of the broadcast ones used in the SPP. The polynomial in equation
(3.25) can be applied to interpolate the precise orbits. Note that the
orbits are referred to the satellite mass centre, hence equation (5.79)
must be applied to compute the ∆APC vector offset.

The satellite clocks should not be interpolated and thus only epochs having
clocks available must be used (see section 3.3.3).

Relativistic effects: The gravitational path range correction, equation
(5.15), can be added to the satellite clock correction due to the orbital
eccentricity, equation (5.19), considered in the SPP.

12That is, the coordinates are treated as white-noise parameters in the navigation filter.
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Atmospheric effects:

The ionospheric refraction and DCBs are removed using the ionosphere-
free combination of measurements (see details in section 5.4.1.1).

The tropospheric refraction can be modelled by equation (5.65), where
the mapping of Niell is used (see section 5.4.2.2.1). The dry and wet
tropospheric delays are given by equation (5.66). The deviation of
the zenith tropospheric delay ∆Tz,wet with respect to the nominal
Tz0,wet must be estimated in the Kalman filter, together with the co-
ordinates, clock and carrier phase biases.

Antenna biases and orientation:

The satellite and receiver antenna phase centres can be found in the IGS
ANTEX files, after GPS week 1400 (see section 5.6.1). Before this
week, the values of Table 5.4 can be used.

The carrier phase wind-up effect due to the satellite’s motion is given by
equation (5.71).

Satellites under eclipse conditions should be removed from the computa-
tion due to the large orbit error. The eclipse condition is given by
equation (5.14).

Earth deformation effects:

Solid tides can be modelled by equations (5.83), (5.84) and (5.85).

Ocean loading and pole tides are second-order effects and can be neglected
for PPP accuracies at the centimetre level (see comments in sections
5.7.2 and 5.7.3).

6.2.2 Linear Observation Model for PPP

Based on equations (4.19), code and carrier measurements in the ionosphere-
free combination are modelled as follows:

Rj
C

= ρj + c(δt− δtj) + Trj +Mj
C

+ εj
C

Φj
C

= ρj + c(δt− δtj) + Trj + λN w
j +Bj

C
+mj

C
+ εj

C

(6.55)

where Rj
C

is the unsmoothed code pseudorange measurement for the jth
satellite in view and Φj

C
is the corresponding carrier measurement. Remark:

ρ is referred to the APCs in the ionosphere-free combination (see equation
(5.81)).

Following the same procedure as in section 6.1, the linear observation
model y = G x for the code and carrier measurements can be written as
follows.
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Prefit residuals:

y =



R1
C
− ρ1

0 + c δt1 − Tr1
0

Φ1
C
− ρ1

0 + c δt1 − Tr1
0 − λN w

1

...

Rn
C
− ρn0 + c δtn − Trn0

Φn
C
− ρn0 + c δtn − Trn0 − λN w

n


(6.56)

Note: The satellite clock offset δtj includes the satellite clock rela-
tivistic correction due to the orbital eccentricity, equation (5.19). The
relativistic path range correction (5.15) is included in the geometric
range ρj0.

The term Tr0 is the nominal value for the tropospheric correction.
Note that, according to equation (5.66), the tropospheric delay in
equation (6.55) can be decomposed into a nominal term Tr0(E) and
the deviation from this nominal term Mwet(E) ∆Trz,wet. That is,

Tr(E) = Tr0(E) +Mwet(E) ∆Trz,wet

Tr0(E) = Trz,dryMdry(E) + Trz0,wetMwet(E)
(6.57)

The mapping factor Mwet(E) is an element of the design matrix (6.58)
and ∆Trz,wet is a component of the parameter vector (6.59), as fol-
lows:

Design matrix

G =



x0−x1

ρ10

y0−y1
ρ10

z0−z1
ρ10

1 M1
wet 0 ... 0 ... 0

x0−x1

ρ10

y0−y1
ρ10

z0−z1
ρ10

1 M1
wet 1 ... 0 ... 0

...
...

...
...

...
...

...
...

x0−xk

ρk0

y0−yk
ρk0

z0−zk
ρk0

1 Mk
wet 0 ... 0 ... 0

x0−xk

ρk0

y0−yk
ρk0

z0−zk
ρk0

1 Mk
wet 0 ... 1︸︷︷︸

k

... 0

...
...

...
...

...
...

...
x0−xn

ρn0

y0−yn
ρn0

z0−zn
ρn0

1 Mn
wet 0 ... 0 ... 0

x0−xn

ρn0

y0−yn
ρn0

z0−zn
ρn0

1 Mn
wet 0 ... 0 ... 1



(6.58)

Vector parameters (to be estimated)

x =
[
dx, dy, dz, c δt,∆Trz,wet, B

1
C
, . . . , Bk

C
, . . . , Bn

C

]T
(6.59)

6.2.3 Parameter Adjustment for PPP

The linear observation model y = G x can be solved using the Kalman
filter, considering the carrier phase biases Bi

C
as ‘constant’ along continuous

phase arcs, and as ‘white noise’ at those instants when cycle slips occurs.
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The following stochastic model can be used for the filter:13

Carrier phase biases (BC ) are taken as ‘constant’ along continuous phase
arcs, and as ‘white noise’ when a cycle slip happens (σ = 104 m can
be taken, for instance), see section 6.1.2.1.

Wet tropospheric delay (∆Trz,wet) is taken as a random walk process
(a process noise with dσ2/dt = 1 cm2/h, initialised with σ2

0 = 0.25 m2

can be used for most of the applications), see section 6.1.2.1.2.

Receiver clock (c δt) is taken as a white-noise process (with σ = 3·105 m,
i.e. 1 ms for instance), see section 6.1.2.1.

Receiver coordinates (dx, dy, dz)

For static positioning the coordinates are taken as constants, see section
6.1.2.1.1.

For kinematic positioning the coordinates are taken as white noise or a
random walk process as in section 6.1.2.1.2.

This solution procedure is called floating ambiguities – floating in the
sense that the ambiguities are estimated by the filter ‘as real numbers’.
The bias estimations Bi will converge to a solution after a transition time
that depends on the observation geometry, model quality and data noise.
In general, one must expect errors at the decimetre level, or better, in
pure kinematic positioning (after the best part of one hour) and at the
centimetre level in static PPP. See exercises 3 and 4 of laboratory session
1.1 in Volume II.

6.3 Carrier Phase Ambiguity Fixing

As already mentioned, the carrier phase measurements are much more pre-
cise than the code pseudorange measurements (typically, about two orders
of magnitude), but they contain the unknown ambiguities (B), see equation
(6.55). If such ambiguities are fixed, then the carrier phase measurements
become unambiguous pseudoranges, and accurate at the level of a few mil-
limetres.

6.3.1 Double-Differenced Ambiguity Fixing

In the discussion presented below, the carrier ambiguities will be considered
as double differences between pairs of receivers and satellites. This is done
in order to cancel out the fractional part of the ambiguities (brcv, b

sat),
leaving the remaining ambiguities as an integer number of wavelengths.
That is, given

Bsat
rcv = λN sat

rcv + brcv + bsat (6.60)

the double differences, regarding a reference receiver and satellite, yield

∆∇Bsat
rcv = Bsat

rcv −Bsat
rcv0
− (B

sat0
rcv −B

sat0
rcv0

) = λ∆∇N sat
rcv (6.61)

where the satellite and receiver ambiguity terms (brcv, b
sat) cancel out.

13See the default configuration parameters in the gLAB tool.
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6.3.1.1 Carrier Phase Ambiguity Fixing with Two Frequencies

A simple approach to ambiguity fixing is presented briefly as follows:14

Wide-lane ambiguity fixing: Double-differenced wide-lane ambiguity
∆∇NW can be computed from the Melbourne–Wübbena combina-
tion, by rounding the average in time15 (see equations (4.19)):

∆∇NW =

[
∆∇ΦW −∆∇RN

λW

]
roundoff

(6.62)

This ambiguity estimate has the advantage that it can easily be ob-
tained separately for each measurement thanks to the enlargement
of the ambiguity spacing. Under moderate receiver noise and multi-
path conditions, a few minutes should be enough to fix the wide-lane
ambiguity.

L1 ambiguity fixing: After fixing ∆∇NW , the double-differenced L1 am-
biguity (∆∇N1) can be fixed from the expression

∆∇N1 =

[
1

λN

(
∆∇B̂C

)
− λW
λ2

∆∇NW

]
roundoff

(6.63)

when a sufficiently accurate estimate of the ambiguity ∆∇B̂C is avail-
able. This estimate ∆∇B̂C can be computed as in the previous section
(PPP), by floating the BC ambiguities in the Kalman filter.

As these ambiguities are determined ‘by floating’ them in the navi-
gation filter, some time is needed (almost an hour) for the filter to
converge. Indeed, roughly speaking, the ambiguity BC is mostly esti-
mated from RC − ΦC , where the RC code noise is about three times
noisier than the code measurement in frequency f1, see Fig. 4.3.

There are more complex methods available, such as the LAMBDA
method ([Teunissen, 1996]; [Teunissen et al., 1997]), the Null Space
method [Martin-Neira et al., 1995] or others [Kim and Langley, 2000],
where the ambiguities are fixed ‘as a set’, and decorrelation and search
(on integers) techniques are applied to enhance resolution of the am-
biguity.16

Ionosphere-free bias fixed: After fixing the ∆∇NW and ∆∇N1 ambi-
guities, the double-differenced ionosphere-free bias is fixed by

∆∇BC = λN

(
∆∇N1 +

λW
λ2

∆∇NW

)
(6.64)

14The expressions below can be easily derived from equations (4.19) and (4.20).
15Note that the code noise is reduced in the narrow-lane combination RN by a factor of√
2 (see page 76), but on the other hand the ambiguity spacing is wider in the wide-lane

combination (see section 4.1 and Figs 4.3 and 4.10). For instance, for the Galileo E1,
E5b signals, λW = 0.81 cm, see Table 6.1; or, for the L1, L2 GPS signals, λW = 0.86 cm,
see Table 4.1.

16MATLAB source code implementing the LAMBDA method is available on request
at http://www.citg.tudelft.nl/en/about-faculty/departments/geoscience-and-remote-
sensing/research-themes/gps/lambda-method/. See also [Strang and Borre, 1997].
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Once the ∆∇BC ambiguity is fixed, a double-differenced measure-
ment two orders of magnitude more accurate than the code (typi-
cally) is available. This allows centimetre-level positioning accuracy
to be achieved.

An alternative way to avoid the time span needed for the floated ∆∇B̂C
term to converge is to use the following equation for fixing the Φ1 ambiguity:

∆∇N1 =

[
∆∇Φ1 −∆∇Φ2 −∆∇I − λ2∆∇NW

λ2 − λ1

]
roundoff

(6.65)

However, there is a problem here, mainly with the ionospheric refraction
term ∆∇I.

For short baselines (up to 10–15 km, depending on the ionospheric condi-
tions) it can be assumed that the double-differenced ionospheric refraction
cancels out (i.e. ∆∇I ' 0), and thus the ∆∇N1 ambiguity can be fixed by
rounding the expression

∆∇N1 =

[
∆∇Φ1 −∆∇Φ2 − λ2∆∇NW

λ2 − λ1

]
roundoff

(6.66)

This is the approach applied in the Real-Time Kinematics (RTK) am-
biguity fixing technique. Executable software implementing the RTK is
available at http://gpspp.sakura.ne.jp/rtklib/rtklib.htm.

For long baselines, an accurate ionospheric correction estimate ∆∇Î is
needed to allow the user to fix the ambiguity by rounding equation (6.65).
Note that, once the ambiguity NW is fixed, since the carrier measurement
noise is only a few millimetres, the main contribution to the rounding error
is from the ∆∇Î term. Note also that its accuracy must be better than
(λ2 − λ1)/2 to allow integer rounding. In the case of the Galileo E1 and
E5b signals, this accuracy threshold is (λ2 − λ1)/2 = 2.9 cm, see Table 6.1.
For the L1 and L2 GPS signals, it is (λ2 − λ1)/2 = 2.7cm, see Table 4.1.

The Wide-Area Real-Time Kinematics (WARTK) technique has proved
that accurate ionospheric corrections can be computed from the measure-
ments gathered from permanent reference station networks with similar
baselines, such as the SBAS (WAAS, EGNOS, etc.) networks. Such highly
accurate ionospheric corrections allow carrier phase ambiguity fixing over
a wide area. In this way, the WARTK technique can extend the RTK am-
biguity fixing from a local to a wide area; that is, at a continental scale.
For more details see [HJS et al., 2010] and [Juan et al., 2012b].

6.3.1.2 Carrier Phase Ambiguity Fixing with Three Frequencies

With two-frequency signals, in RTK or WARTK, the convergence time is
linked to the wide-lane ambiguity (∆∇NW ) fixing. With three-frequency
systems, using two close frequency signals it is possible to generate an
extra-wide-lane signal to enable the single-epoch wide-lane ambiguity fix-
ing. That is, without needing the time span required by equation (6.62) to
smooth the code noise up to the roundoff threshold.
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For a clearer presentation of concepts, the following definitions and no-
tation will be used:

ΦEW = ΦW23
, ΦW = ΦW12

, REN = RN23
(6.67)

where the wide-lane and narrow-lane combinations are computed by com-
bining the respective frequencies according to equations (4.6) and (4.7).
Moreover, the frequencies and values of Table 6.1 will be taken as refer-
ences for the numerical application.

With three-frequency signals, the following ambiguity fixing procedure
can be considered.17

Wide-lane ambiguity fixing: Equation (6.62) used in the previous sec-
tion is replaced by the two following equations (6.68) and (6.69).

For the extra-wide-lane ambiguity fixing,

∆∇NEW =

[
∆∇ΦEW −∆∇REN

λEW

]
roundoff

(6.68)

As shown in Fig. 4.3 on page 76, the code noise in the extra-narrow-
lane combination ∆∇REN is reduced by a factor18 of about

√
2 but,

on the other hand, the ambiguity spacing is enlarged by the extra-
wide-lane combination. If the frequencies in Table 6.1 are used, then
λEW = 9.678 m, which means about 10 times the λW and about 50
times the λ1 ambiguity spacing.

Thus, since the measurement noise is far from the rounding threshold,
the extra-wide-lane ambiguity (∆∇NEW ) can be fixed in a single
epoch.

For the wide-lane ambiguity fixing,

∆∇NW =

[
λ
EW

∆∇N
EW

+(α̃
EW
−α̃

W
)∆∇I−(∆∇Φ

EW
−∆∇Φ

W )
λ
W

]
roundoff

(6.69)

Using the values of Table 6.1, the coefficient of the ionospheric term
∆∇I is α̃EW − α̃W = 0.63. This allows an error up to 0.65 cm in the
Φ1−Φ2 delay (or 6.5 TECUs) for the ionospheric correction to fit into
the rounding threshold (i.e. λW /2). That is, more than 20 times the
error threshold allowed by equation (6.65).

Therefore, with the ∆∇NEW ambiguity fixed, the limiting factor in
this equation is the carrier phase multipath. Note that the carrier
phase noise in the extra-wide-lane combination is several times larger
than in the original signals. That is,

σΦEW
' (
√
γ23 + 1/(

√
γ23 − 1))σ ' 55σ (6.70)

where σ ≡ σΦE5b
' σΦE5a

.

17Equations (6.68) and (6.69) are derived from equations (4.6) and (4.7).
18σREN

' (
√
γ23 + 1/(

√
γ23 + 1))σ ' 1/

√
2σ, where uncorrelated errors are assumed

and with the same noise σ ≡ σRE5b
' σRE5a

, see Table 6.1.

157



TM-23/1

Narrow-lane ambiguity fixing: As in the two-frequency case, once the
wide-lane ambiguity is fixed, the narrow-lane ambiguity can be fixed
by either equation (6.63) or (6.65). After fixing these ambiguities,
the unambiguous ionosphere-free bias ∆∇BC can be obtained from
equation (6.64).

If single-epoch ambiguity fixing is desired, then equation (6.65) must
be used to fix ∆∇N1. That is,

∆∇N1 =

[
∆∇Φ1 −∆∇Φ2 −∆∇I − λ2∆∇NW

λ2 − λ1

]
roundoff

(6.71)

Note that, as in the two-frequency case studied in the previous section,
this equation is affected by the ionospheric refraction decorrelation
with distance, limiting the ambiguity fixing to short baselines, as in
the Three Carrier Ambiguity Resolution (TCAR) technique, if an
accurate prediction of ∆∇I is not available for the user. Thus, as
in the previous case, WARTK allows the baselines to be extended by
up to hundreds of kilometres as a result of the accurate ionospheric
modelling.

Table 6.1: Values illustrating the ambiguity fixing concepts (taken from Tables 4.1 and

4.2). Note that the factors α̃i are normalised with respect to α2 − α1, associated with the

frequencies f1, f2 used for the ionosphere-free combination.

Signals
Wavelengths Combinations

γij= (fi/fj)
2

(m) (m)

f1 ≡ fE1 λ1 = 0.190 λ2 − λ1 = 0.058 γ12 = (77/59)2

f2 ≡ fE5b λ2 = 0.248 λW ≡ λW12
= 0.814 γ13 = (154/115)2

f3 ≡ fE5a λ3 = 0.255 λEW ≡ λW23
= 9.768 γ23 = (118/115)2

Factors

~αW =
αW

α2 − α1

=

√
γ12

γ12 − 1
~αEW =

αEW

α2 − α1

=
√
γ13 ~αW α̃EW − α̃W

1.856 2.485 0.629

6.3.2 Undifferenced Ambiguity Fixing

As commented previously, the double-differenced ambiguities between pairs
of satellites and receivers are integer numbers of wavelengths, see equation
(6.61). Indeed, the fractional part cancels in such double differences:

∇∆bsatrcv = 0 (6.72)

An immediate consequence of this equation is the separability of the frac-
tional part of the ambiguities (for each satellite–receiver arc) in two inde-
pendent terms, one of them linked only to the receiver and the other only
to the satellite:19

∇∆bsatrcv = 0⇐⇒ bsatrcv = brcv + bsat (6.73)

19The proof of equation (6.73) is left as exercise for the reader. Note that the sep-
arability has been assumed de facto since the beginning of this book, see for instance
equations (4.3), (4.19) or (6.61).
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Figure 6.4: Carrier phase

instrumental delays or the

fractional part of ambiguities for

the GPS satellite PRN14 (left)

and receiver COCO (right). The

wide lane is shown in blue and L1

in red. The vertical axis is in

cycles and the horizontal one in

seconds of day. The pattern in

the figures is due to correlations

with other parameters in the

filter, mainly the satellite clocks.

This equation means that fractional parts of the ambiguity (brcv and bsat)
are not linked to a specific satellite–receiver arc, but bsat depends only on
the satellite (and it is common to all carrier measurements of receivers
tracking this satellite) and brcv depends only on the receiver (and it is
common to all satellites tracked by a given receiver).

The fractional part of the wide-lane ambiguity can be easily estimated
from the MW combination, because it is uncorrelated with other para-
meters in the navigation filter (see Fig. 6.4, in blue),20 while the fractional
part of the short-lane ambiguity (i.e., b1) can be added to the sate-
llite and receiver clock. This approach leads to so-called phase clocks
[Laurichesse and Mercier, 2007], which are different from the code clock
(i.e. not consistent with the code clock).21

Another, more straightforward approach is to consider a fractional part
of the ambiguities such as carrier phase instrumental delays,22 and to re-
move them using accurate determinations of values computed from a re-
ceiver network [Juan et al., 2010]. Indeed, the carrier instrumental delays
or fractional part of the ambiguities (brcv and bsat) can be estimated from
a global network of permanent stations, after fixing the double-differenced
ambiguities ∇∆Bsat

rcv = λ∇∆N sat
rcv between the satellites and receivers. As

shown in Fig. 6.4, these estimates are stable enough to be broadcast to
users as low-varying parameters.

Thus, with accurate determinations of such parameters, the user can
remove the fractional part23 and fix the remaining ambiguity as an integer
number. This can be done in the same way as explained in previous sections,
but in undifferenced mode, allowing, in this way, real-time ambiguity fixing
for PPP.

20The fractional parts of wide-lane (blue) and short-lane (red) fractional ambiguity
estimates are shown in the same figure. The larger variability seen for the short lane is
due to the correlations with the other parameters in the filter, mainly the clocks.

21Nevertheless, this is not a critical issue for fixing the ambiguities, because the code
is used mainly to initialise the filter (and to help its convergence).

22To be more precise, the residual value after removing the integer ambiguities. That
is, b = B − λN , see equations (4.19).

23Only the fractional ambiguities for the satellites must be broadcast to users, because
those of the receiver are common to all satellites.
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Note that a PPP-based ambiguity fixing approach can allow worldwide
ambiguity fixing to be performed, because no baseline limitations apply,24

thus improving the PPP accuracy. Nevertheless, as with PPP, a large
convergence time is required for the filter to start the ambiguity fixing (see
section 6.3.1.1).

Some works focusing on the undifferenced ambiguity fixing are as follows:
[Juan et al., 2010], [Laurichesse and Mercier, 2007], [Banville et al., 2008],
[HJS, 2010] and [Ge et al., 2008], among others.

6.3.3 Accelerating the Filter Convergence: Fast PPP

Accurate ionospheric corrections computed by a wide-area network can be
used to accelerate the filter convergence in both undifferenced and differen-
tial positioning (in double differences). As is shown in [Juan et al., 2012a],
accuracies better than 10 cm are achieved in a few minutes (typically less
than 5 min) with two-frequency signals, while almost an hour is needed
when the ionospheric corrections are not used (i.e. in classical PPP mode).
Moreover, as in section 6.3.1.2, with three-frequency signals, accurate iono-
spheric corrections allow the single-epoch solution to be achieved.

A simple explanation of how the accurate ionospheric corrections (to-
gether with the differential code biases) help the filter convergence is given
by the equation

ΦI − I −K21 =
1

α̃W
(BW −BC ) (6.74)

Indeed, this equation defines a link between the geometry-free bias (BI =
ΦI − I − K21), the ionosphere-free bias BC , and the wide-lane bias BW ,
see equations (4.19), and can be used as a constraint in the user navigation
filter.

As mentioned above, the wide-lane bias BW can be estimated quickly (in
a few minutes with two-frequency or in a single epoch with three-frequency
signals). Thus, the ionosphere (I), together with the differential code bias
(K21), form a bridge to transfer this accuracy quickly achieved in the wide-
lane bias estimate (BW ) to the ionosphere-free bias (BC ).

In other words, when the ionosphere (I) is available at the user location,
then an ionosphere-free bias (BC ) estimate can be computed from equation
(6.74) and used by the navigation filter as additional data to help estimate
this carrier phase ambiguity (BC ). But these data are several times more
accurate than the ionosphere-free code measurement, which is driving filter
convergence during the first epochs in the classical PPP approach.

This new approach is called Fast Precise Point Positioning (F-PPP) and
is patent-protected [HJS et al., 2011].

An example of the F-PPP performance based on actual GPS data is
shown in Fig. 6.5, which summarises the results obtained for users MLVL,
EUSK and EIJS (at 252, 170 and 94 km, respectively, from the nearest
reference receiver BRUS). In this example, the full user state was reset
every 2 h to better characterise the convergence process, and the position

24Unlike in the differential positioning regarding a reference station (which requires,
at least, common view satellites).
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Figure 6.5: RMS of the

positioning error for the

horizontal component (left) and

vertical component (right). The

classical PPP for the rovers

MLVL (red), EUSK (green) and

EIJS (blues) is compared with

the fast PPP for MLVL (violet),

EUSK (light blue) and EIJS

(brown). Data set of 24

November 2009.

error RMS of the resulting 12 time windows is depicted. The horizontal and
vertical errors are shown (left- and right-hand side, respectively) demon-
strating the advantage of using precise, real-time ionospheric corrections to
speed up the PPP convergence (Fast PPP). It can be seen that the con-
vergence time (to achieve, for instance, a 10 cm error level) is reduced from
about 1 h (without ionospheric corrections) to a few minutes. For details
see [Juan et al., 2012a].

It must be pointed out that the accurate ionospheric corrections ac-
celerate the filter convergence even without fixing the carrier ambiguities,
because equation (6.74) does not require the wide-lane ambiguity to be
fixed. Only a sufficiently accurate wide-lane ambiguity estimate is needed
to improve the estimate for BC , which can always be achieved quickly.

This technique has been developed by the Research group of Astronomy
and Geomatics (gAGE) of the Technical University of Catalonia (UPC)
to provide a reliable High-Precision Positioning Service (HPPS), with a
low-bandwidth requirement. Indeed, only 10% of additional bandwidth is
needed for the classical PPP, because the additional data to be broadcast
(i.e. ionospheric corrections and code and carrier instrumental delays) are
slowly varying parameters that can be transmitted at a low rate.

This system approach, protected by several ESA-funded patents,25 is
able to provide an HPPS at a global scale, with worldwide undifferenced
ambiguity fixing capability. Wide-area enhancement to allow this high
accuracy to be achieved rapidly over continental areas is done with the
help of accurate ionospheric corrections computed from a sparse reference
station network (e.g. EGNOS reference stations (RIMS) in Europe). More
details, including integrity issues, can be found in [Juan et al., 2012a].

25See the patent references and ESA- and GSA-funded projects to develop this tech-
nique at http://www.gage.upc.edu.
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A. Time and Coordinate Frame
Transformations

A brief description of time and coordinate systems was presented in section
3.1. This appendix contains an extended explanation and the necessary
equations to perform accurate transformations between the different time
and coordinate systems.

To simplify the presentation, the equations given in this appendix are
based on the IERS Conventions of 1996 (IERS96) [McCarthy, 1996],
although continuous references to IERS03 [McCarthy and Petit, 2004] are
given when readers need to be aware of the changes.

A.1 Time Systems

As commented in section 3.1, several types of time systems are defined, ac-
cording to the different references or periodic process involved (see
Table 3.1). The definition, properties and relations between such kinds
of time systems are presented below.

A.1.1 Earth’s Rotation Time

A time linked to Earth’s rotation can be measured from the angle between
a reference meridian (a local or the Greenwich one) and the meridian con-
taining a celestial reference. As already explained in section 3.1, solar time
takes the Sun as a reference and sidereal time takes the vernal equinox (the
Aries point).

A.1.1.1 Solar Time

Our time keeping was initially based on the motion of the Sun, but the way
that this time flows is affected by two main causes:

• The orbit of Earth is elliptic. Thus, according to Kepler’s second
law,1 the orbital speed is not constant.

• Earth’s axis of rotation is not perpendicular to the plane of Earth’s
orbit around the Sun,2 hence the angular rate is not constant. It
moves fastest at the end of December and slowest in mid-September.

1The radius vector from the Sun to Earth sweeps out equal areas in equal times.
2The Sun moves around the ecliptic not the equator. The ecliptic is the apparent

circular path of the Sun on the celestial sphere during the course of a year. The ecliptic
is inclined at an angle of about 23◦26′ with respect to the equator, see equation (A.25).
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Figure A.1: Equation of time.
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To get a more uniform time, a fictitious mean Sun is defined, which
moves along the (celestial) equator of Earth with uniform speed (mean
velocity of the actual Sun). Using this mean Sun, one defines mean solar
time as the hour angle3 of the centre of the mean Sun.

The difference between mean solar time and true solar time is reflected
in the equation of time, which is a periodic function with a one-year period.
Figure A.1 shows a plot of the equation of time. This evolution is a direct
consequence of the two effects on the apparent solar rotation rate described
above.

Civil time is defined from mean solar time as mean solar time augmented
in 12 hours, so that each day begins at midnight.4 Civil time is local (i.e.
associated with local meridians). In order to get a global time that is not
linked to these local meridians, Universal Time (UT) is defined as the civil
time at the Greenwich meridian.

On the other hand, Earth’s rotation rate is not uniform. It is affected by
secular variations, mainly due to tidal friction, seasonal changes and other
irregular or random effects, producing variations in Earth’s distribution of
mass and moment of inertia (see page 44). To deal which such effects, the
following times (or refinements of UT) have been introduced:

UT0 is the mean solar time at the Greenwich meridian and is determined
at a particular observatory by astronomical observations. As this
time is based on Earth’s instantaneous rotation, it is affected by both
Earth’s irregular spin rate and polar motion.

UT1 is obtained by correcting UT0 for the effect of polar motion on the lo-
cation of the observing site (i.e. deducting the CTP pole, see equation
(A.11)). UT1 is the same around the world (i.e. it does not depend

3Sun hour angle is the angular displacement of the Sun (measured over the equator
and in a retrograde sense) from the local meridian. Thus, it is zero when the Sun is on
the local meridian (solar noon), negative before local noon and positive in the afternoon.

4Midnight is the time when the hour angle of the mean Sun’s centre is at a longitude
of 180◦.
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Figure A.2: Mean and true

equinox.

on the observatory’s location). This time is fundamental in geode-
tic astronomy, because it defines the orientation of the conventional
terrestrial system in space (see section A.2.2).

UT2 is obtained by removing periodic seasonal variations from UT1 time,
see equation (A.13), but it is not uniform enough due to the other
effects on Earth’s rotation that still remain. Nowadays it is considered
obsolete.

A.1.1.2 Sidereal Time

The reference is the vernal equinox, or the Aries point, which is defined as
the intersection of the equator with the ecliptic plane. Two types of Aries
point can be considered depending on which equator plane is considered
(i.e. the mean equator or the true equator):

• Mean Aries point (γM): This is the intersection of the mean equa-
tor plane at epoch J2000.0 (the effect of precession on Earth’s axis of
rotation is taken into account, see section 3.1.2.1) with the ecliptic,5

see Fig. A.2.

• True Aries point (γT ): This is defined as the intersection of the
true equator6 (the effects of precession and nutation of Earth’s pole
of rotation have been taken into account, see section 3.1.2.1) with the
ecliptic,7 see Fig. A.2.

5Actually, the mean ecliptic. Like Earth’s pole of rotation, the ecliptic pole undergoes
precession and nutation effects due to the perturbation of the Moon and major planets
on Earth’s orbit. Nevertheless, the amplitude of this pole is 50 times shorter than Earth’s
pole of rotation and, at the level of accuracy required here, we will not distinguish between
the mean or true ecliptic.

6This equator is defined as the plane that contains the geocentre and is orthogonal to
the instantaneous daily rotation axis.

7Due to the accuracies required, it is sufficient to compute the true Aries point using
the mean ecliptic plane. We will always refer to this plane as ‘the ecliptic’, without
distinguishing between the mean or the true one.
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Figure A.3: Different sidereal

times.
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According to the previous definitions, four classes of sidereal times can
be introduced:

• Greenwich Apparent Sidereal Time (GAST) (ΘG) is the hour
angle of the ‘true’ Aries point, from the true Greenwich meridian.

• Local Apparent Sidereal Time (LAST) (Θ) is the hour angle of
the ‘true’ Aries point, from the local meridian.8

• Greenwich Mean Sidereal Time (GMST) (θG) is the same as
GAST but with the mean equinox.

• Local Mean Sidereal Time (LMST) (θ) is the same as LAST
but with the mean equinox.

Figure A.3 summarises these four sidereal times. GAST and GMST
are given by equations (A.33) and (A.34), respectively. The local and
Greenwich sidereal times differ by the longitude λ of the local meridian.
The difference between the apparent and mean sidereal times is called the
equation of equinoxes (where αE is given by equation (A.37)), that is

GMST− LMST = GAST− LAST = λ

GMST−GAST = LMST− LAST = αE
(A.1)

A.1.1.3 The Relationship between Solar and Sidereal Time

There is a slight difference between a sidereal day and a solar (or syn-
odic) day due to the relative movement between the Sun and Earth as a
consequence of its annual translation. Figure A.4 illustrates the concept.

As shown in this figure, the Aries reference point (γ), as seen from Earth,
apparently moves clockwise during the course of one year (with respect to
the Sun as reference). After one year, the directions of the Sun and Aries
coincide again, but the number of laps relative to the Sun (solar days) is
one less than those relative to Aries (sidereal days).

8Apparent in astronomy refers to what is seen from an ideal centre of Earth, without
the atmosphere and rotation. Under these conditions the effects of the refraction of light,
aberration and parallax are suppressed.
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times.

The difference between the mean sidereal day and mean solar day can
be derived approximately as follows. As in a solar tropical year,9 the mean
solar time is delayed by one day with respect to the mean sidereal time,
hence

24h

365.2422
' 3m56s (A.2)

Thus, a sidereal day is shorter than a solar day for about 3m56s.

The conversion between UT1 and apparent and mean sidereal time is
given by equations (A.33) and (A.35) in section A.2.5.2.

A.1.2 Earth’s Revolution Time

A.1.2.1 Ephemeris Time

Ephemeris Time (ET) was adopted in 1952 as the (conceptually uniform)
time of Newtonian mechanics. It was defined in terms of the Earth’s orbital
revolution around the Sun, and it was declared to be free of the effects of
irregularity in the unpredictable polar motion and Earth’s rate of rotation.

The ET second was established as the SI second between 1956 and 1967
and defined as the tropical year fraction

ET second =
1

31 556 925.9747
(A.3)

In 1976, in Grenoble, the IAU resolved that ET would be replaced by two
relativistic time scales intended to constitute dynamical time scales (derived
from planetary motions in the Solar System): Temps Dinamique Baricen-
trique (TDB) and Temps Dinamique Terrestre (TDT):

• TDB is an inertial time in the Newtonian sense and provides the time
variable in the equations of motion for the ephemerides related to the
centre of gravity of the Solar System (i.e. for computing planetary
orbits around the Sun).

9A tropical year is the elapsed time between two successive culminations of the Sun
by the mean equinox. It has a duration of 365.2422 mean solar days.
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• TDT is a quasi-inertial time in the Newtonian sense and is the inde-
pendent variable of the satellite’s equations of motion around Earth.10

In the general terminology of gravity, TDB is a coordinate time and TDT
is a proper time.

IAU Resolution A4 (1991) established the framework presently used to
define the Barycentric Reference System (BRS) and Geocentric Reference
System (GRS), respectively, and associated with these systems were the
defined Barycentric Coordinate Time, from the French Temps Coordonné
Barycentrique (TCB) and Geocentric Coordinate Time, from the French
Temps Coordonné Géocentrique (TCG). An additional time for the GRS
system named Terrestrial Time (TT) was also defined. TT corresponds
to TDT in the former definitions (TDT and TDB used before 1991) and
is introduced as the theoretical counterpart of the realised time scale TAI
+ 32.184 s (see the IERS Conventions of 2003 [McCarthy and Petit, 2004]).

A.1.3 Atomic Time

A.1.3.1 TAI

TAI stands for ‘International Atomic Time’ and was established as a ref-
erence time by the Bureau International de l’Heure. Its initial epoch was
matched to the 0h0m0s of the UT2 scale of 1 January 1958, so the difference
between TAI and UT2 was zero in this epoch.

The duration of the TAI second was defined in 1967 as the same as the
ET second, according to the following extract:

The TAI second is the duration of 9 192 631 770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the

ground state of the Caesium 133 atom.

It is realised by several high-precision atomic clocks held at standards in-
stitutes in various countries; it is, therefore, a statistical time. There is
an elaborate process of continuous intercomparison, leading to a weighted
average of all the clocks involved.

Following this definition, the TAI second was substituted for the ET
second as the SI second in 1967. Bearing in mind the next three points,
one can obtain the relationship between ET and TAI:

• The TAI second equals the ET second.

• The difference between ET time and UT2 time at 0h0m0s of the UT2
scale of 1 January 1958 was 32.184 s.

• TAI time equals UT2 time at 0h0m0s of the UT2 scale of 1 January
1958.

Obviously the relationship between the TAI scale and ET scale (or TDT
scale subsequently) is a constant offset of 32.184 s.

10It is quasi-inertial because Earth is subjected to an acceleration caused by its annual
translation around the Sun.
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A.1.3.2 UTC

UTC stands for Coordinated Universal Time and is a compromise between
TAI and UT1. In fact UTC, as an atomic time, is as uniform as the TAI
scale is, but it is always kept closer than 0.9 s with respect to UT1, in
order to follow the variations in Earth’s rotation. This is accomplished
by adding (or subtracting) a certain number of leap seconds to TAI. This
number, which is refreshed periodically, is provided by the IERS.

This time is very important since most of the currently used time signals
are synchronised with UTC.

Official time is the one used by all nations in the world. It usually differs
by an integer number of hours or half an hour with regard to UTC. This
difference is given by time zones and the proper adjustments in summer
and winter.

UTC is generated at the Bureau International des Poids et Mesures
(BIPM), located near Paris (http://www.bipm.fr). It is obtained on the
basis of times kept by about 250 caesium clocks and hydrogen masers lo-
cated at some 65 different laboratories, distributed around the world, and
applying a set of algorithms to ensure a uniform time. It is not determined
in real time, but generated with a delay of about half a month.

Real-time estimates of UTC are computed and provided by different
centres, such as: UTC(USNO), from the United States Naval Observa-
tory (USNO); UTC(NIST), from the National Institute of Standards and
Technology (NIST); and UTC(SU) from Russia (SU stands for the former
Soviet Union); or, in general, UTC(k) as a realisation of UTC by a given
laboratory k. For more details see [Lewandowski et al., 2006].

GNSS satellites broadcast in their navigation messages the necessary pa-
rameters to compute real-time estimates of UTC. Indeed, these parameters
allow a GPS receiver clock to calculate accurate estimates of UTC(USNO)
at the level of 25 ns RMS, and remote clocks can be compared with an
accuracy of 5 ns. On the other hand, one of the requirements of Glonass
updates is to keep the UTC − UTC(SU) difference within 10 ns, as an ac-
curate means of UTC(SU) dissemination [Januszewski, 2010].

A.1.4 Julian Date

In order to facilitate calculations for long time intervals, the Julian date
(JD) is used (after Julio Scalier).

The JD defines the number of days11 elapsed since 4713 BC, January
1d· 5 (i.e. 12h of 1 January). This day is the zero epoch for the JD and,
after that time, the days are counted without interruption. Every Julian
day begins at 12 hours UT of the civil day and ends at 12 hours UT of the
following day. This kind of calendar does not use the hour:minute:second
format, but fractions of the day.

11The Julian century is defined as 36 525 days.
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The conversion between calendar year(Y):month(M):day(D) of UT and
JD is given by the following expressions [Hofmann-Wellenhof et al., 2008]:

JD = int[365.25 y] + int[30.6001 (m+ 1)] +D +
UT hours

24.0
+ 1 720 981.5

(A.4)
where

y = Y − 1 and m = M + 12; M ≤ 2

y = Y and m = M ; M > 2
(A.5)

The JD relative to J2000 is obtained by subtracting 2 451 545.0 days
from the JD (i.e. the number of days elapsed since 12h on 1 January 2000).

The inverse transformation is carried out by computing the next values:

a = int[JD + 0.5]

b = a+ 1537

c = int

[
b− 122.1

365.25

]
d = int[365.25 c]

e = int

[
b− d

30.6001

]
(A.6)

Afterwards the civil date is obtained from the following expressions:

D = b− d− int[30.6001 e] + frac[JD + 0.5]

M = e− 1− 12× int
[ e

14

]
Y = c− 4715− int

[
7 +M

10

] (A.7)

where int and frac denote the integer and fractional part of a real number,
respectively.

A.1.5 Transformations

A summary of transformations between different times is presented next.

A.1.5.1 TAI – UTC

The difference between these times is given by the accumulated leap sec-
onds. These leap seconds are provided by the IERS. The IGS centres
provide files of Earth’s rotation parameters and time information, which
are actualised periodically (see http://acc.igs.org):

UTC = TAI− leap seconds (A.8)

With the introduction of the leap second, UTC (which is an atomic time)
does not differ from Earth’s rotational time (UT1) by more than 0.9 s.
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A.1.5.2 TAI – UT1

An a priori UT1 (ŨT1) can be computed from

ŨT1 = UT1R + ∆UT1 (A.9)

hence
TAI− ŨT1 = [TAI−UT1R]−∆UT1

where UT1R is a smoothed a priori measurement of Earth’s orientation for
which the short-period (t < 35 days) tidal effects have been removed before
smoothing [Webb and Zumberge, 1993].

TAI−UT1R or UTC−UT1R are provided in files for Earth’s rotation
parameter.12

According to [Yoder et al., 1981], the periodic variations of UT1 due to
tidal deformations of the polar moment of inertia are given by

∆UT1 =

N∑
i=1

Ai sin

 5∑
j=1

kij αj

 (A.10)

The number N is chosen to include all terms with a period of less than 35
days. The αj are functions of time given by equations (A.26) to (A.30)
below. The parameters Ai, kij are given in Table A.1 for periods up
to 41 days. A table with periods up to 18.6 years (62 terms) based on
[Yoder et al., 1981] is available at http://hpiers.obspm.fr/eop-pc/models/
UT1/UT1R tab.html . An extended model with sine and cosine terms is
given in the IERS03 Conventions (see [McCarthy and Petit, 2004], page
92) with the associated table of coefficients.

A.1.5.3 UT0, UT1, UT2

As commented above, UT0, UT1 and UT2 are universal times linked to
Earth’s rotation.

UT1 and UT0 are related by the following expression, where ∆l is a
correction of longitude due to the effect of polar motion:

UT1 = UT0 + ∆l (A.11)

where

∆l =
1s

15
(xp sinλ− yp cosλ) tanϕ (A.12)

In this expression xp and yp are the instantaneous pole coordinates (see
Fig. A.7 below) while λ and ϕ are the site’s latitude and longitude respec-
tively.13 With this rotation axis correction the pole movement in longitude

12Earth’s orientation parameters and time information are provided from different
servers and with different format files: namely, ‘erp’ files, the GIPSY format ‘PNML’ and
‘tpeo.nml’ files. See ftp://igscb.jpl.nasa.gov/pub/product/iers/ or http://acc.igs.org/
or the JPL sites ftp://sideshow.jpl.nasa.gov/pub/gipsy products/2009/orbits/ and
ftp://sideshow.jpl.nasa.gov/pub/gipsy products/RapidService/orbits/ .

13The xp and yp pole displacements are given in the previously mentioned files for
Earth’s rotation parameters (e.g. the JPL TPNML files).
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(∆l) is removed and one passes from the instantaneous pole (CEP) to the
Conventional Terrestrial Pole (CTP), see Fig. 3.3, on the right.

UT2 is obtained by correcting UT1 for the periodic seasonal variation
of Earth’s rotation

UT2 = UT1 + ∆S (A.13)

where

∆S = 0s
·022 sin 2πt−0s

·120 cos 2πt−0s
·0060 sin 4πt+0s

·0070 cos 4πt (A.14)

with ∆S in seconds and t being the date in Besselian years:

t = 2000.00 +
MJD− 51 544.03

365.2422
(A.15)

A.1.5.4 TAI – TDT, TCG, TT

As mentioned previously, following the IAU Resolution of 1991, the TDT
is substituted by TCG and TT, where TT corresponds to the TDT in the
former definition (before 1991). Thus

TDT ≡ TT = TAI + 32.184 s (A.16)

where TAI is a realisation of TT, apart from a constant offset of 32.184 s.
On the other hand, TCG and TT are related by [McCarthy and Petit, 2004]

TCG− TT = LG (MJD− 43 144.0) 86 400 s (A.17)

with LG = 6.969 290 134 · 10−10.

A.1.5.5 TDT – TDB, TCB

The relationship between these times is given by

TDB = TDT + 0s
·001 658 sin(g + 0.0167 sin g) (A.18)

with

g =
2π(357◦·528 + 35 999◦·050T )

360◦

where T is in centuries from J2000 of TDT:14

Centuries =
JD− 2 451 545.0

36 525
(A.19)

As in the case of TDT, after the IAU Resolution of 1991, TDB was sub-
stituted by TCB, which is related to TDB by [McCarthy and Petit, 2004]

TCB− TDB = LB(MJD− 43 144.0) 86 400 s + P0 (A.20)

with LB = 1.550 519 767 72 · 10−8 and P0 ' 6.55 · 10−5 s.

14T can be taken here as centuries from J2000 of TDT, without incurring significant
error.
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A.2 Coordinate Systems

Although the CRS and TRS were defined in section 3.1.2, a brief review is
given here to help clarify the concepts introduced in this appendix.

A.2.1 Conventional Celestial Reference System (CRS)

This reference system is also known as Earth-Centred Inertial (ECI)15 and
is mainly used for describing satellite motion. CRS has its origin in Earth’s
centre of mass or geocentre, its fundamental plane is the mean equatorial
plane (containing the geocentre) of the epoch J2000.0, and the principal
axis x points to the mean vernal equinox of epoch J2000.0 mean Aries
point.

The three axes defining this coordinate are shown in Fig. A.5 and are
as follows:

• xCRS axis: Its origin is the geocentre, Earth’s centre of mass, and its
direction is towards the mean equinox at J2000.0 (i.e. the intersection
of the J2000.0 mean equatorial plane with the ecliptic plane).

• zCRS axis: This is defined by the direction of Earth’s mean rotation
pole at J2000.0 (orthogonal to the mean equatorial plane at J2000.0
epoch).

• yCRS axis: This is orthogonal to the other axes, so the system is right
handed.

Mean J2000.0
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M

Figure A.5: Conventional

Celestial Reference System.

15Strictly speaking this is a quasi-inertial system because of the annual motion of Earth
around the Sun. Thus it is subjected to a certain acceleration but can be thought as
inertial over short periods of time.
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A.2.2 Conventional Terrestrial Reference System (TRS)

This reference system is also known as Earth-Centred, Earth-Fixed (ECEF).
It is a rotating reference system (not a space-fixed system like CRS). Its
origin is Earth’s centre of mass; the fundamental plane contains this origin
and it is perpendicular to Earth’s CTP – defined as the average of the poles
from 1900 to 1905. Its principal axis points to the intersection of the mean
Greenwich meridian with the equator. Since this coordinate system follows
the diurnal rotation of Earth, this is not an inertial reference system.

The three axes that define this system are shown in Fig. A.6 and are as
follows:

• zTRS axis: This is defined by the CTP.

• xTRS axis: This is defined as the intersection of the equatorial plane
with the mean Greenwich meridian. The equatorial plane is orthog-
onal to the CTP. The mean Greenwich meridian was established by
the Bureau International de l’Heure (BIE) Observatory.

• yTRS axis: This is orthogonal to the other axes, so the system is right
handed.

A.2.3 Celestial Ephemeris Pole (CEP)

The CEP is Earth’s instantaneous rotation axis. This pole allows us to
define a quasi-inertial system, like the CRS, but linked with this true pole.
Its origin is Earth’s centre of mass and its fundamental plane is the true
equator, as it is orthogonal to the true pole; and its principal direction is
towards the true vernal equinox (i.e. the intersection between the ecliptic
plane and the true equatorial plane), see Fig. 3.3.

If all external forces were null, the CEP would be a fixed pole in space
(i.e. it would not precess or nutate). Nevertheless the position of the CEP
relative to Earth’s crust would change due to the irregular mass distribution
of Earth and its variation. But if Earth were spherical and homogeneous,

Figure A.6: Conventional

Terrestrial Reference System.
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the CEP would be a fixed pole in space, whether the external forces are null
of not, and also on the surface of Earth. This pole is a suitable reference
for an external observer.

IAU Resolution B1.7 recommended that, after 1 January 2003, the CEP
should be replaced by the Celestial Intermediate Pole (CIP). The defini-
tion of the CIP is an extension of that of the CEP in the high-frequency
domain and coincides with that of the CEP in the low-frequency domain
[McCarthy and Petit, 2004]. It is consistent with the IAU2000A model for
precession and nutation.

A.2.4 Reference Systems and Frames

Reference system and reference frame are different concepts. The first is
understood as ‘a theoretical definition’, including models and standards for
its implementation. The second is a ‘practical implementation’ through
observations and a set of reference coordinates, for example a set of fun-
damental stars, for a celestial reference frame, or fiducial stations for a
terrestrial reference frame.

The International Celestial Reference System (ICRS) was proposed by
the IERS and formally accepted by the IAU in 1997. A realisation of
the ICRS is the International Celestial Reference Frame (ICRF). On the
other hand, IERS is in charge of defining, realising and promoting the
International Terrestrial Reference System (ITRS). Realizations of ITRS
are the ITRFs,16 with ITRF2008 being the current reference realisation of
ITRS at the time of writing.

A.2.5 Transformations between Celestial and Terrestrial
Frames

The procedure for performing an accurate transformation between the
coordinate frames of the ICRF and ITRF is described in the following
sections (see Fig. 3.3).

To simplify the explanations a little, the equations and parameters
provided in this appendix implement the IAU 1976 and 1980 precession
and nutation models, respectively (see the IERS Conventions 1996
[McCarthy, 1996]). Nevertheless, IAU Resolution B16 recommended that,
commencing 1 January 2003, the previous models should be replaced
by the new IAU 2000 model. Procedures and equations implementing
such transformations are described in the IERS Conventions 2003
[McCarthy and Petit, 2004]. The IERS documents and software routines
can be found at ftp://maia.usno.navy.mil/conv2003/chapter5/ .

16See http://itrf.ensg.ign.fr/ITRF solutions/index.php.
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A.2.5.1 ICRF to CEP

As indicated above, to transform coordinates from the ICRF to the CEP
it is necessary to correct the precession and nutation effects. This trans-
formation is performed by a composite of rotations that can done by two
orthogonal matrices P and N as follows:

rCEP = N P rICRF (A.21)

Precession Matrix P

Mean coordinates are transformed from the reference epoch J2000.0 to the
observation epoch t using the precession matrix

P = R3 (−z) R2 (ϑ) R3 (−ζ)

=

 cos(−z) sin(−z) 0

− sin(−z) cos(−z) 0

0 0 1

 cosϑ 0 − sinϑ

0 1 0

sinϑ 0 cosϑ

 cos(−ζ) sin(−ζ) 0

− sin(−ζ) cos(−ζ) 0

0 0 1



=



cos z cosϑ cos ζ

− sin z sin ζ

− cos z cosϑ sin ζ

− sin z cos ζ
− cos z sinϑ

sin z cosϑ cos ζ

+ cos z sin ζ

− sin z cosϑ sin ζ

+ cos z cos ζ
− sin z sinϑ

sinϑ cos ζ − sinϑ sin ζ cosϑ


(A.22)

where the angles are given by the expressions (IAU 1976 Precession Model)17

z = 2306′′· 2181T + 1′′· 094 68T 2 + 0′′· 018 203T 3

ϑ = 2004′′· 3109T − 0′′· 426 65T 2 − 0′′· 041 833T 3

ζ = 2306′′· 2181T + 0′′· 301 88T 2 + 0′′· 017 998T 3

(A.23)

with T the time expressed in Julian centuries of TDB (see equation (A.19))
between the reference epoch J2000.0 and the epoch t of observation. Note
that the time t is expressed in the TDB scale because, as in previous sec-
tions, all computations related to Solar System planetary orbits and me-
chanics must be given in this scale.

17IAU Resolution B16 recommended that, beginning on 1 January 2003, the IAU
1976 Precession Model and IAU 1980 Theory of Nutation should be replaced by the IAU
2000 models. Equations, parameters, procedures and software routines implementing the
IAU 2000 model can be found at ftp://maia.usno.navy.mil/conv2003/chapter5/ . (IERS
Recommendations 2003).
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Nutation Matrix N

Mean coordinates at the observation epoch t are transformed to true coor-
dinates referred to the instantaneous true equator and equinox using the
nutation matrix:

N = R1 (−(ε′)) R3 (−∆ψ) R1 (ε)

=

 1 0 0

0 cos(−ε′) sin(−ε′)
0 − sin(−ε′) cos(−ε′)


 cos(−∆ψ) sin(−∆ψ) 0

− sin(−∆ψ) cos(−∆ψ) 0

0 0 1

×
 1 0 0

0 cos ε sin ε

0 − sin ε cos ε



=



cos ∆ψ − cos ε sin ∆ψ − sin ε sin ∆ψ

− cos ε′ sin ∆ψ
cos ε′ cos ε cos ∆ψ

− sin ε′ sin ε

cos ε′ sin ε cos ∆ψ

+ sin ε′ cos ε

sin ε′ sin ∆ψ
− sin ε′ cos ε cos ∆ψ

+ cos ε′ sin ε

− sin ε′ sin ε cos ∆ψ

+ cos ε′ cos ε


(A.24)

where the angles are given by the expressions (1980 IAU Nutation model)

ε′ = ε+ ∆ε

ε = 23◦26′21′′· 448− 46′′· 8150T − 0′′· 000 59T 2 + 0′′· 001 813T 3

∆ψ =
∑N

j=1

[
(A0j +A1j T ) sin

(∑5
i=1 kji αi

)]
∆ε =

∑N
j=1

[
(B0j +B1j T ) cos

(∑5
i=1 kji αi

)]
(A.25)

the parameters A0j , A1j , B0j , B1j and kji being listed in Table A.2. The
parameters αi are time dependent (just like ε) and are computed as

• Moon’s mean anomaly

α1 = l = 485 866′′· 733+(1325r+715 922′′· 633)T +31′′· 310T 2 +0′′· 064T 3

(A.26)

• Sun’s mean anomaly

α2 = l′ = 1 287 099′′· 804+(99r+1 292 581′′· 224)T −0′′· 577T 2−0′′· 012T 3

(A.27)

• Moon’s mean argument of latitude

α3 = F = 335 778′′· 877+(1342r+295 263′′· 137)T−13′′· 257T 2+0′′· 011T 3

(A.28)
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• Moon’s mean elongation from the Sun

α4 = D = 1 072 261′′· 307+(1236r+1 105 601′′· 328)T−6′′· 891T 2+0′′· 019T 3

(A.29)

• Mean longitude of the ascending lunar node

α5 = Ω = 450 160′′· 280− (5r + 482 890′′· 539)T + 7′′· 455T 2 + 0′′· 008T 3

(A.30)

The value 1r = 360◦ = 1 296 000′′ and T is the same as the one used to
compute the precession matrix.

A.2.5.2 CEP to ITRF

To transform the coordinates from the instantaneous space-fixed equatorial
system CEP to a conventional terrestrial frame ITRF it is necessary to cor-
rect the polar motion and sidereal time (because the CEP is a non-rotating
system while ITRF is tied to Earth’s rotation). This transformation is
given by the composite of rotation matrices RS and RM as follows:

rITRF = RM RS rCEP (A.31)

Earth Rotation Matrix RS

This matrix defines a rotation around the CEP of angle ΘG . That is,

RS = R3(ΘG) =

 cos ΘG sin ΘG 0

− sin ΘG cos ΘG 0

0 0 1

 (A.32)

where ΘG is the Greenwich Apparent (=true) Sidereal Time (GAST)18 of
the date, which is given by

ΘG = θG + αE (A.33)

where θG is the Greenwich Mean Sidereal Time19 (GMST) and αE is the
equinox equation at the observation time UT1, and where20

θG = 1.002 737 909 350 795 ·UT1 + θG0 (A.34)

with θG0 the GMST at 0h UT1:

θG0 = 6h41m50s
·548 41 + 864 018 4s

·812 866Tu + 0s
·093 104T 2

u − 6s
·2 10−6T 3

u

(A.35)
and Tu expressed in centuries of Julian UT1 date:

Tu =
(Julian UT1 date)− 2 451 545.0

36 525
(A.36)

18That is, the hour angle of the true equinox, from the true Greenwich meridian (see
section A.1.1.2).

19The hour angle of the mean equinox of the date, from the Greenwich meridian.
20The ratio of universal to sidereal time 1.002 737 909 350 795 can be approximately

computed as the ratio between 24h and 24h– 3m56s. A very accurate value is
1.002 737 909 350 795 + 5.9006 · 10−11Tu − 5.9 · 10−15T 2

u .
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αE is the difference between the hour angle of the true equinox (γT ) of the
date and the mean equinox (γM ) of the date,21 a difference which is due to
the nutation of Earth and can be computed from

αE = tan−1

(
N12

N11

)
(A.37)

where Nij is the component of row i and column j of the nutation matrix
(see expression (A.24)). Note that the sidereal time (GAST or GMST) is
always measured from the true Greenwich meridian.

Polar Motion Matrix RM

This matrix is given by two elemental rotations, R1(−yp) and R2(−xp),
around the x- and y-axis, respectively. With these rotations the CEP is
matched to the CTP pole:

RM = R2(−xp) R1(−yp) (A.38)

where xp and yp define the position of the CEP with respect to the CTP
(see Fig. A.7, on the right side).

The xp and yp pole displacements between 2002 and 2008 are shown in
Fig. A.7, on the left side.

Because the polar movement is quite unpredictable, the xp and yp dis-
placements are estimated from observations and provided by the IERS,
as mentioned above. These values can be obtained from files for Earth’s
rotation parameters provided by the IERS or JPL.

21That is, between the GAST and GMST. This difference is called the equation of
equinoxes, see equation (A.1).
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Table A.1: Variations in Earth’s rotation due to zonal tides [Yoder et al., 1981]

(see IERS 96 Conventions). Components with period under 35 days. See also

http://hpiers.obspm.fr/eop-pc/models/UT1/UT1R_tab.html.

Index Argument coefficient Period Ai

i ki1 ki2 ki3 ki4 ki5 (days) (×10−4 s)

1 1 0 2 2 2 5.64 −0.024
2 2 0 2 0 1 6.85 −0.040
3 2 0 2 0 2 6.86 −0.099
4 0 0 2 2 1 7.09 −0.051
5 0 0 2 2 2 7.10 −0.123
6 1 0 2 0 0 9.11 −0.039
7 1 0 2 0 1 9.12 −0.411
8 1 0 2 0 2 9.13 −0.993
9 3 0 0 0 0 9.18 −0.018

10 −1 0 2 2 1 9.54 −0.082
11 −1 0 2 2 2 9.56 −0.197
12 1 0 0 2 0 9.61 −0.076
13 2 0 2 −2 2 12.81 0.022
14 0 1 2 0 2 13.17 0.025
15 0 0 2 0 0 13.61 −0.299
16 0 0 2 0 1 13.63 −3.208
17 0 0 2 0 2 13.66 −7.757
18 2 0 0 0 −1 13.75 0.022
19 2 0 0 0 0 13.78 −0.338
20 2 0 0 0 1 13.81 0.018
21 0 −1 2 0 2 14.19 −0.024
22 0 0 0 2 −1 14.73 0.047
23 0 0 0 2 0 14.77 −0.734
24 0 0 0 2 1 14.80 −0.053
25 0 −1 0 2 0 15.39 −0.051
26 1 0 2 −2 1 23.86 0.050
27 1 0 2 −2 2 23.94 0.101
28 1 1 0 0 0 25.62 0.039
29 −1 0 2 0 0 26.88 0.047
30 −1 0 2 0 1 26.98 0.177
31 −1 0 2 0 2 27.09 0.435
32 1 0 0 0 −1 27.44 0.534
33 1 0 0 0 0 27.56 −8.261
34 1 0 0 0 1 27.67 0.544
35 0 0 0 1 0 29.53 0.047
36 1 −1 0 0 0 29.80 −0.055
37 −1 0 0 2 −1 31.66 0.118
38 −1 0 0 2 0 31.81 −1.824
39 −1 0 0 2 1 31.96 0.132
40 1 0 −2 2 −1 32.61 0.018
41 −1 −1 0 2 0 34.85 −0.086
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Table A.2: IAU 1980 Theory of nutation model (source http://hpiers.obspm.fr/eop-pc/models/
nutations/nut_IAU1980.dat).(.../contd.)

Index Argument coefficient Period A0j A1j B0j B1j

i ki1 ki2 ki3 ki4 ki5 (days) (×10−4 ′′) (×10−4 ′′)

1 0 0 0 0 1 −6798.4 −171 996.0 −174.2 92 025.0 8.9
2 0 0 2 −2 2 182.6 −13 187.0 −1.6 5 736.0 −3.1
3 0 0 2 0 2 13.7 −2 274.0 −0.2 977.0 −0.5
4 0 0 0 0 2 −3399.2 2 062.0 0.2 −895.0 0.5
5 0 −1 0 0 0 −365.3 −1 426.0 3.4 54.0 −0.1
6 1 0 0 0 0 27.6 712.0 0.1 −7.0 0.0
7 0 1 2 −2 2 121.7 −517.0 1.2 224.0 −0.6
8 0 0 2 0 1 13.6 −386.0 −0.4 200.0 0.0
9 1 0 2 0 2 9.1 −301.0 0.0 129.0 −0.1
10 0 −1 2 −2 2 365.2 217.0 −0.5 −95.0 0.3
11 −1 0 0 2 0 31.8 158.0 0.0 −1.0 0.0
12 0 0 2 −2 1 177.8 129.0 0.1 −70.0 0.0
13 −1 0 2 0 2 27.1 123.0 0.0 −53.0 0.0
14 1 0 0 0 1 27.7 63.0 0.1 −33.0 0.0
15 0 0 0 2 0 14.8 63.0 0.0 −2.0 0.0
16 −1 0 2 2 2 9.6 −59.0 0.0 26.0 0.0
17 −1 0 0 0 1 −27.4 −58.0 −0.1 32.0 0.0
18 1 0 2 0 1 9.1 −51.0 0.0 27.0 0.0
19 −2 0 0 2 0 −205.9 −48.0 0.0 1.0 0.0
20 −2 0 2 0 1 1305.5 46.0 0.0 −24.0 0.0
21 0 0 2 2 2 7.1 −38.0 0.0 16.0 0.0
22 2 0 2 0 2 6.9 −31.0 0.0 13.0 0.0
23 2 0 0 0 0 13.8 29.0 0.0 −1.0 0.0
24 1 0 2 −2 2 23.9 29.0 0.0 −12.0 0.0
25 0 0 2 0 0 13.6 26.0 0.0 −1.0 0.0
26 0 0 2 −2 0 173.3 −22.0 0.0 0.0 0.0
27 −1 0 2 0 1 27.0 21.0 0.0 −10.0 0.0
28 0 2 0 0 0 182.6 17.0 −0.1 0.0 0.0
29 0 2 2 −2 2 91.3 −16.0 0.1 7.0 0.0
30 −1 0 0 2 1 32.0 16.0 0.0 −8.0 0.0
31 0 1 0 0 1 386.0 −15.0 0.0 9.0 0.0
32 1 0 0 −2 1 −31.7 −13.0 0.0 7.0 0.0
33 0 −1 0 0 1 −346.6 −12.0 0.0 6.0 0.0
34 2 0 −2 0 0 −1095.2 11.0 0.0 0.0 0.0
35 −1 0 2 2 1 9.5 −10.0 0.0 5.0 0.0
36 1 0 2 2 2 5.6 −8.0 0.0 3.0 0.0
37 0 −1 2 0 2 14.2 −7.0 0.0 3.0 0.0
38 0 0 2 2 1 7.1 −7.0 0.0 3.0 0.0
39 1 1 0 −2 0 −34.8 −7.0 0.0 0.0 0.0
40 0 1 2 0 2 13.2 7.0 0.0 −3.0 0.0
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Table A.2: (contd.)

Index Argument coefficient Period A0j A1j B0j B1j

i ki1 ki2 ki3 ki4 ki5 (days) (×10−4 ′′) (×10−4 ′′)

41 −2 0 0 2 1 −199.8 −6.0 0.0 3.0 0.0
42 0 0 0 2 1 14.8 −6.0 0.0 3.0 0.0
43 2 0 2 −2 2 12.8 6.0 0.0 −3.0 0.0
44 1 0 0 2 0 9.6 6.0 0.0 0.0 0.0
45 1 0 2 −2 1 23.9 6.0 0.0 −3.0 0.0
46 0 0 0 −2 1 −14.7 −5.0 0.0 3.0 0.0
47 0 −1 2 −2 1 346.6 −5.0 0.0 3.0 0.0
48 2 0 2 0 1 6.9 −5.0 0.0 3.0 0.0
49 1 −1 0 0 0 29.8 5.0 0.0 0.0 0.0
50 1 0 0 −1 0 411.8 −4.0 0.0 0.0 0.0
51 0 0 0 1 0 29.5 −4.0 0.0 0.0 0.0
52 0 1 0 −2 0 −15.4 −4.0 0.0 0.0 0.0
53 1 0 −2 0 0 −26.9 4.0 0.0 0.0 0.0
54 2 0 0 −2 1 212.3 4.0 0.0 −2.0 0.0
55 0 1 2 −2 1 119.6 4.0 0.0 −2.0 0.0
56 1 1 0 0 0 25.6 −3.0 0.0 0.0 0.0
57 1 −1 0 −1 0 −3232.9 −3.0 0.0 0.0 0.0
58 −1 −1 2 2 2 9.8 −3.0 0.0 1.0 0.0
59 0 −1 2 2 2 7.2 −3.0 0.0 1.0 0.0
60 1 −1 2 0 2 9.4 −3.0 0.0 1.0 0.0
61 3 0 2 0 2 5.5 −3.0 0.0 1.0 0.0
62 −2 0 2 0 2 1615.7 −3.0 0.0 1.0 0.0
63 1 0 2 0 0 9.1 3.0 0.0 0.0 0.0
64 −1 0 2 4 2 5.8 −2.0 0.0 1.0 0.0
65 1 0 0 0 2 27.8 −2.0 0.0 1.0 0.0
66 −1 0 2 −2 1 −32.6 −2.0 0.0 1.0 0.0
67 0 −2 2 −2 1 6786.3 −2.0 0.0 1.0 0.0
68 −2 0 0 0 1 −13.7 −2.0 0.0 1.0 0.0
69 2 0 0 0 1 13.8 2.0 0.0 −1.0 0.0
70 3 0 0 0 0 9.2 2.0 0.0 0.0 0.0
71 1 1 2 0 2 8.9 2.0 0.0 −1.0 0.0
72 0 0 2 1 2 9.3 2.0 0.0 −1.0 0.0
73 1 0 0 2 1 9.6 −1.0 0.0 0.0 0.0
74 1 0 2 2 1 5.6 −1.0 0.0 1.0 0.0
75 1 1 0 −2 1 −34.7 −1.0 0.0 0.0 0.0
76 0 1 0 2 0 14.2 −1.0 0.0 0.0 0.0
77 0 1 2 −2 0 117.5 −1.0 0.0 0.0 0.0
78 0 1 −2 2 0 −329.8 −1.0 0.0 0.0 0.0
79 1 0 −2 2 0 23.8 −1.0 0.0 0.0 0.0
80 1 0 −2 −2 0 −9.5 −1.0 0.0 0.0 0.0
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Table A.2: (contd.)

Index Argument coefficient Period A0j A1j B0j B1j

i ki1 ki2 ki3 ki4 ki5 (days) (×10−4 ′′) (×10−4 ′′)

81 1 0 2 −2 0 32.8 −1.0 0.0 0.0 0.0
82 1 0 0 −4 0 −10.1 −1.0 0.0 0.0 0.0
83 2 0 0 −4 0 −15.9 −1.0 0.0 0.0 0.0
84 0 0 2 4 2 4.8 −1.0 0.0 0.0 0.0
85 0 0 2 −1 2 25.4 −1.0 0.0 0.0 0.0
86 −2 0 2 4 2 7.3 −1.0 0.0 1.0 0.0
87 2 0 2 2 2 4.7 −1.0 0.0 0.0 0.0
88 0 −1 2 0 1 14.2 −1.0 0.0 0.0 0.0
89 0 0 −2 0 1 −13.6 −1.0 0.0 0.0 0.0
90 0 0 4 −2 2 12.7 1.0 0.0 0.0 0.0
91 0 1 0 0 2 409.2 1.0 0.0 0.0 0.0
92 1 1 2 −2 2 22.5 1.0 0.0 −1.0 0.0
93 3 0 2 −2 2 8.7 1.0 0.0 0.0 0.0
94 −2 0 2 2 2 14.6 1.0 0.0 −1.0 0.0
95 −1 0 0 0 2 −27.3 1.0 0.0 −1.0 0.0
96 0 0 −2 2 1 −169.0 1.0 0.0 0.0 0.0
97 0 1 2 0 1 13.1 1.0 0.0 0.0 0.0
98 −1 0 4 0 2 9.1 1.0 0.0 0.0 0.0
99 2 1 0 −2 0 131.7 1.0 0.0 0.0 0.0

100 2 0 0 2 0 7.1 1.0 0.0 0.0 0.0
101 2 0 2 −2 1 12.8 1.0 0.0 −1.0 0.0
102 2 0 −2 0 1 −943.2 1.0 0.0 0.0 0.0
103 1 −1 0 −2 0 −29.3 1.0 0.0 0.0 0.0
104 −1 0 0 1 1 −388.3 1.0 0.0 0.0 0.0
105 −1 −1 0 2 1 35.0 1.0 0.0 0.0 0.0
106 0 1 0 1 0 27.3 1.0 0.0 0.0 0.0
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B. Coordinate Conversions

B.1 Cartesian and Ellipsoidal Coordinate
Conversions

The global (x, y, z) ECEF Cartesian coordinates can be expressed in ellip-
soidal (geodetic) coordinates (ϕ, λ, h), where ϕ and λ are, respectively, the
ellipsoidal latitude and longitude, and h is the height above the ellipsoid.
The centre of the ellipsoid is at the origin of the Cartesian system and its
minor axis b (axis of revolution) is coincident with the z–axis, see Fig. B.1.

B.1.1 From Ellipsoidal to Cartesian Coordinates

The Cartesian coordinates of a point (x, y, z) can be obtained from the
ellipsoidal coordinates (ϕ, λ, h) by the expressions

x = (N + h) cosϕ cosλ

y = (N + h) cosϕ sinλ

z =
(
(1− e2)N + h

)
sinϕ

(B.1)

where N is the radius of curvature in the prime vertical

N =
a√

1− e2 sin2 ϕ
(B.2)

and where the eccentricity e is related to the semi-major axis a, the semi-
minor axis b and the flattening factor f = 1− b/a by

e2 =
a2 − b2

a2
= 2f − f2 (B.3)

X

Y

Z

h

b

a

Figure B.1: Cartesian (x , y , z)
and ellipsoidal (ϕ, λ, h)
coordinates.
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B.1.2 From Cartesian to Ellipsoidal Coordinates

The ellipsoidal coordinates of a point (ϕ, λ, h) can be obtained from the
Cartesian coordinates (x, y, z) as follows.

The longitude λ is given by

λ = arctan
y

x
(B.4)

The latitude is computed by an iterative procedure.

1. The initial value is given by

ϕ(0) = arctan

[
z/p

1− e2

]
(B.5)

with p =
√
x2 + y2.

2. Improved values of ϕ, as well as the height h, are computed by iter-
ating the equations

N(i) =
a√

1− e2 sin2 ϕ
(i−1)

h(i) =
p

cosϕ
(i−1)

−N(i)

ϕ(i) = arctan

 z/p

1− N(i)

N(i)+h(i)
e2


(B.6)

The iterations are repeated until the change between two successive
values of ϕ(i) is smaller than the precision required.

These coordinate transformations are implemented in programs
sub car2geo.f and sub geo2car.f in Volume II.

B.2 Transformations between ECEF and ENU
Coordinates

Let (x, y, z) be the ECEF Cartesian coordinates of a given point P and
(ϕ, λ) its associated latitude and longitude. Let ∆r = (∆x,∆y,∆z) be a
displacement vector from that point. These vector coordinates can be trans-
formed from the ECEF to the local system East-North-Up (∆e,∆n,∆u)
coordinates, and vice versa, by two rotations as illustrated in Fig. B.2.

B.2.1 From ENU to ECEF Coordinates

1. A clockwise rotation over the East-axis by an angle 90 − ϕ to align
the up-axis with the z-axis. That is, R1[−(π/2− ϕ)].

2. A clockwise rotation over the z-axis by an angle 90 + λ to align the
East-axis with the x-axis. That is, R3[−(π/2 + λ)].
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x

z

e

u
n

P

Dr

Figure B.2: Transformations

between ENU and ECEF

coordinates.

Thus  ∆x

∆y

∆z

 = R3[−(π/2 + λ)] R1[−(π/2− ϕ)]

 ∆e

∆n

∆u

 (B.7)

which, according to expressions (3.6) of the rotation matrices given in sec-
tion 3.6, yields

R3[−(π/2+λ)] R1[−(π/2−ϕ)]=

− sinλ − cosλ sinϕ cosλ cosϕ

cosλ − sinλ sinϕ sinλ cosϕ

0 cosϕ sinϕ

 (B.8)

The unit vectors in the local east, north and up directions as expressed
in ECEF Cartesian coordinates are given by the columns of matrix (B.8).
That is,

ê = (− sinλ , cosλ , 0)

n̂ = (− cosλ sinϕ , − sinλ sinϕ , cosϕ)

û = (cosλ cosϕ , sinλ cosϕ , sinϕ)

(B.9)

Note that, if (ϕ, λ) are ellipsoidal coordinates, then the vector û is or-
thogonal to the tangent plane to the ellipsoid, which is defined by (ê, n̂). If
(ϕ, λ) are taken as the spherical latitude and longitude, then the vector û
is in the radial direction and (ê, n̂) defines the tangent plane to the sphere.

B.2.2 From ECEF to ENU Coordinates

Taking into account the properties of the rotation matrices Ri(α), that is
R−1
i (α) = Ri(−α) = RT

i (α), the inverse transformation of (B.7) is given
by  ∆e

∆n

∆u

 = R1[π/2− ϕ] R3[π/2 + λ]

 ∆x

∆y

∆z

 (B.10)
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where the transformation matrix of (B.10) is the transpose of matrix (B.8)

R1[π/2− ϕ] R3[π/2 + λ] =

 − sinλ cosλ 0

− cosλ sinϕ − sinλ sinϕ cosϕ

cosλ cosϕ sinλ cosϕ sinϕ

 (B.11)

The unit vectors in the ECEF x̂, ŷ and ẑ directions, as expressed in
ENU coordinates, are given by the columns of matrix (B.11). That is,

x̂ = (− sinλ , − cosλ sinϕ , cosλ cosϕ)

ŷ = (cosλ , − sinλ sinϕ , sinλ cosϕ)

ẑ = (0 , cosϕ , sinϕ)

(B.12)

B.3 Elevation and Azimuth Computation

Given the line-of-sight unit vector

ρ̂ =
rsat − rrcv
‖rsat − rrcv‖

(B.13)

where rsat and rrcv are the geocentric positions of the satellite and re-
ceiver, respectively, the elevation and azimuth in the local system coordi-
nates (ENU), defined by the unit vectors ê, n̂ and û, can be computed from
(see Fig. B.3)

ρ̂ · ê = cosE sinA

ρ̂ · n̂ = cosE cosA

ρ̂ · û = sinE

(B.14)

Thus the elevation and azimuth of the satellite in the local coordinate
system are given by

E = arcsin(ρ̂ · û) (B.15)

A = arctan

(
ρ̂ · ê
ρ̂ · n̂

)
(B.16)

Figure B.3: Local coordinate

frame showing the elevation (E)

and azimuth (A).
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C. Computation of Osculating Orbital
Elements

A scheme with the necessary calculations to obtain the osculating orbital
elements starting from the position and velocity of a satellite (in a geocen-
tric inertial system), and vice versa, is provided as follows (see Fig. C.1
below). The International System of Units (SI) is used.

C.1 Calculation of the Orbital Elements of a
Satellite from its Position and Velocity

(x, y, z, vx, vy, vz) =⇒ (a, e, i, Ω, ω, M) (see rv2osc.f in Volume II)

c = r× v =⇒ p = c2/µ =⇒ p
v2 = µ(2/r − 1/a) =⇒ a
p = a(1− e2) =⇒ e

c = c s =⇒ Ω = arctan(−cx/cy); i = arccos(cz/c) =⇒ Ω , i

 x

y

z

 = R

 r cosV

r sinV

0

 = r

 cos Ω cos(ω + V )− sin Ω sin(ω + V ) cos i

sin Ω cos(ω + V ) + cos Ω sin(ω + V ) cos i

sin(ω + V ) sin i

 ⇒ ω + V

r = p/(1 + e cosV ) =⇒ ω , V

tan(E/2) = ((1− e)/(1 + e))1/2 tan(V/2) =⇒ E

M = E − e sinE =⇒ M

Greenwich
meridian

Equatorialplane

p

y

x

z

Orbit

Aries
point

N
ode

Line

q

s

i

v

Focus of
the ellipse

Ascending
Node

Orbital
plane

Figure C.1: Orbit in space.
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C.2 Calculation of the Position and Velocity of a
Satellite from Its Orbital Elements

(a, e, i, Ω, ω, T ; t︸ ︷︷ ︸
M orE orV

) =⇒ (x, y, z, vx, vy, vz) (program osc2rv.f)

t =⇒ M =⇒ E =⇒ (r, V )

M = n(t− T ) M = E − e sinE r = a(1− e cosE)

tan(V/2) =

√
1 + e

1− e
tan(E/2)

 xy
z

= R

 r cosV

r sinV

0

;
 vx
vy
vz

 = (na2/r){q(1− e2)1/2 cosE − p sinE}

where:

R = R3(−Ω) R1(−i) R3(−ω)

=

 cos Ω − sin Ω 0

sin Ω cos Ω 0

0 0 1


 1 0 0

0 cos i − sin i

0 sin i cos i


 cosω − sinω 0

sinω cosω 0

0 0 1



=

 px qx sx
py qy sy
pz qz sz

 = [p q s]

n2a3 = µ; µ = GME = 3 986 004.418 · 108 m3/s2 c =
√
a2 − b2

n = 2π/P = 1.46 · 10−4 rad/s e = c/a
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D. Bancroft Method

The Bancroft method allows a direct solution of the receiver’s position and
the clock offset to be obtained, without requiring any ‘a priori’ knowledge
of the receiver’s location.

D.1 Raising and Resolution

Let PRj be the prefit residual of satellite j, computed from equation (6.1)
after removing all model terms that do not need a priori knowledge of the
receiver’s position,1 that is

PRj ≡ Rj + c δtj − TGDj (D.1)

Then, neglecting the tropospheric and ionospheric terms, as well as the
multipath and receiver noise, equation (6.2) can be written as

PRj =
√

(xj − x)2 + (yj − y)2 + (zj − z)2 + c δt (D.2)

Developing equation (D.2) further, it follows that[
xj

2
+ yj

2
+ zj

2 − PRj2
]
− 2

[
xjx+ yjy + zjz − PRjcδt

]
+
[
x2 + y2 + z2 − (c δt)2

]
= 0

(D.3)

Then, calling r = [x, y, z]T and considering the inner product of Lorentz2

the previous equation can be expressed in a more compact way as

1

2

〈[
rj

PRj

]
,

[
rj

PRj

]〉
−
〈[

rj

PRj

]
,

[
r

c δt

]〉
+

1

2

〈[
r

c δt

]
,

[
r

c δt

]〉
= 0

This equation can be raised for every satellite (or prefit residual PRj).

1The tropospheric and ionospheric terms T j and α̂ Ij cannot be included, because of
the need to consider the satellite–receiver ray. Of course, after initial computation of the
receiver coordinates, the method could be iterated using the ionospheric and tropospheric
corrections to improve the solution.

2 〈a,b〉 = aT M b =
[
a1, a2, a3, a4

]
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



b1
b2
b3
b4


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If four measurements are available, then the following matrix can be
written, containing all the available information on satellite coordinates
and pseudoranges (every row corresponds to a satellite):

B =


x1 y1 z1 PR1

x2 y2 z2 PR2

x3 y3 z3 PR3

x4 y4 z4 PR4

 (D.4)

Then, calling

Λ =
1

2

〈[
r

c δt

]
,

[
r

c δt

]〉
, 1 =


1

1

1

1

 , a =


a1

a2

a3

a4


with

aj =
1

2

〈[
rj

PRj

]
,

[
rj

PRj

]〉

the four equations for pseudorange can be expressed as

a−B M

[
r

c δt

]
+ Λ 1 = 0 , being M =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1


whence [

r

c δt

]
= MB−1(Λ 1 + a) (D.5)

Then, taking into account the equality 〈Mg,Mh〉 = 〈g,h〉 and that

Λ =
1

2

〈[
r

c δt

]
,

[
r

c δt

]〉

from the former expression one obtains〈
B−11,B−11

〉
Λ2 + 2

[〈
B−11,B−1a

〉
− 1
]

Λ +
〈
B−1a,B−1a

〉
= 0 (D.6)

The previous expression is a quadratic equation in Λ (note that matrix
B and the vector a are also known) and provides two solutions, one of them
with the searched for solution [

r

c δt

]

The other solution is far from Earth’s surface.
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D.1.1 Generalisation to the Case of n Measurements

If more than four observations are available, the matrix B is not square.
However, by multiplying by BT , one obtains (the least squares solution)

BTa−BTB M

[
r

c δt

]
+ Λ BT1 = 0 (D.7)

where: [
r

c δt

]
= M(BTB)−1BT (Λ 1 + a) (D.8)

and then 〈
(BTB)−1BT1, (BTB)−1BT1

〉
Λ2

+2
[〈

(BTB)−1BT1, (BTB)−1BTa
〉
− 1
]

Λ

+
〈
(BTB)−1BTa, (BTB)−1BTa

〉
= 0

(D.9)
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E. Jacobian Matrix: Computation of Partial
Derivatives

Let ρ be the geometric range between the antenna phase centre coordinates
of satellite rsat at emission time and receiver rrcv at reception time, where r
is given in a geocentric inertial system. Both epochs (temission and treception)
are referred to the GNSS time scale, as set by control segment clocks.

The geometric range ρ = ‖rsat − rrcv‖ can be approximated by the
first-order Taylor expansion

ρ = ρ0 +
∂ρ

∂x

∣∣∣∣
(r0,t0)

∆x+
∂ρ

∂y

∣∣∣∣
(r0,t0)

∆y +
∂ρ

∂z

∣∣∣∣
(r0,t0)

∆z +
∂ρ

∂t

∣∣∣∣
(r0,t0)

∆t

where ∆x = x − x0, ∆y = y − y0, ∆z = z − z0 are the corrections to be
applied to nominal value r0rcv to get the precise position of receiver rrcv,
and ∆t is a clock offset.

Calculation of the partial derivatives above depends on how ρ0 is com-
puted (i.e. the signal transmission time and, then, the satellite coordinates).
In Chapter 5, two algorithms were developed to calculate signal emission
epoch and, thus, to calculate distance ρ and the satellite coordinates at
emission epoch.

The following expressions are developed to determine the partial deriva-
tives for each of these algorithms:

1. Computation of derivative ∂ρ/∂t

As mentioned in Chapter 5, pages 98 and 99, these algorithms relate emis-
sion epoch temission with either the ‘satellite clock’ (ιemission) or the ‘receiver
clock’ (τreception). That is,

Pseudorange algorithm: temission = ιemission − dι

Geometric algorithm: temission = f(τreception − dτ)

where f(τreception − dτ) gives the emission epoch computed from the ge-
ometric algorithm, as a function of reception epoch τ (according to the
receiver clock).
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1A. Case of pseudorange-based algorithm

If only the variation of ρ with the emission time is considered, then

ρ(t) ' ρ(ι) +
∂ρ

∂temission
(t− ι) = ρ(ι)− ρ̇(ι)dι

where dι = ι− t.
In this lineal approximation the error incurred when geometric range

ρ is calculated using the emission epoch (according to satellite clock ι),
instead of GNSS time scale t, is proportional to the rate of variation in the
receiver–satellite distance and to the synchronisation error dι of satellite
clock.

In practice, offset dι may be calculated from the navigation message.
For instance, with the GPS legacy message, its accuracy is about 10 to
100 ns, depending on S/A off or on, respectively. In this case, and taking
into account that ρ̇ < 1 km/s, the error in the calculation of ρ is less than
1 mm and the term ρ̇(ι)dι may be ignored (i.e. ρ(t) ' ρ(ι)).

Thence, (considering only the geometric range and clock offsets)

R = c(τreception − ιemission) = c(treception − temission) + c(dτ − dι)
= ρ(t) + c(dτ − dι)
' ρ(ι) + c(dτ − dι)

1B. Case of purely geometric algorithm

As in the previous case, linearising ρ around τ , and considering only vari-
ations in the reception time, results in

ρ(t) ' ρ(τ) +
∂ρ

∂treception
(t− τ) = ρ(τ)− ρ̇(τ)dτ

where dτ = τ − t.
In this case, the receiver clock offset dτ is unknown, but it will be esti-

mated with the receiver coordinates in the navigation solution.1

Although some receivers apply clock steering to update their clocks
epoch by epoch, so the offset dτ is kept within a few tens of nanosec-
onds, many receivers do not update their clocks until the offset reaches
1 ms. In this case, and taking into account that ρ̇ < 1 km/s, the error in
the calculation of ρ may be over several decimetres.

If, as usual, the dτ offset is determined in the navigation solution, then
correction −ρ̇(τ)dτ must be taken into account in the receiver clock coeffi-
cient when the navigation equations are developed (i.e. in the design matrix
or Jacobian, see page 140). Therefore, the element 1 associated to cδt in
the design matrix of equation (6.6) must be substituted by 1− ρ̇/c. Thus

1It may also be extrapolated from previous estimates, although this is not necessary.
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R = c(τreception − ιemission) = c(treception − temission) + c(dτ − dι)

= ρ(t) + c(dτ − dι)

' ρ(τ)− ρ̇(τ)dτ + c(dτ − dι)

= ρ(τ) + [1− ρ̇(τ)/c] cdτ − cdι

Comment: Effect of receiver clock synchronisation error (dτ)
Given a reception epoch, the geometric algorithm calculates the emission
epoch (using an iterative procedure) considering only the receiver–satellite
geometry. Indeed, it computes the signal propagation time by supposing
that it has been received in a given epoch.

Then, if the reception epoch is expressed in the GNSS time scale, it will
be also the same for the emission epoch obtained. If, on the other hand, it is
given by the receiver clock, the synchronisation error between the receiver
clock and GNSS time will introduce an error in the satellite coordinates
(because they are not calculated exactly ‘at GNSS emission epoch’) and,
as a result, an error in geometric range ρ.

Computation of range derivative ρ̇ = ∂ρ/∂treception

Calculating the partial derivative ∂/∂treception of ρ = c
(
treception − temission

)
results in (see [Webb and Zumberge, 1993])

ρ̇ = c

(
1− ∂temission

∂treception

)
Equally, from the equation

ρ2 = c2
(
treception − temission

)2
=
(
rsat − rrcv

)T · (rsat − rrcv
)

one gets

2c2
(
treception − temission

)(
1− ∂temission

∂treception

)
= 2

(
rsat − rrcv

)T ·(ṙsat
∂temission

∂treception
− ṙrcv

)

Solving this equation for ∂temission/∂treception results in

∂temission

∂treception
=
cρ+

(
rsat − rrcv

)T · ṙrcv
cρ+ (rsat − rrcv)

T · ṙsat

and therefore

ρ̇ = c

(
1− ∂temission

∂treception

)
=

(
rsat − rrcv

)T · (ṙsat − ṙrcv
)

ρ
(

1 + (rsat−rrcv)T

ρ · ṙsatc
) =

ρT

ρ ·
(
ṙsat − ṙrcv

)
1 + ρT

ρ ·
ṙsat

c

Taking into account that ṙsat � c, the previous expression becomes:

ρ̇ =
∂ρ

∂treception
' ρ

T

ρ
·
(
ṙsat − ṙrcv

)
where ρT ·

(
ṙsat − ṙrcv

)
can be evaluated either in a CRS or ECEF system,

as Earth’s rotation effect (i.e., ωE × rsat − ωE × rrcv = ωE × ρ) cancels
out in the scalar product.
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2. Computation of derivatives [∂ρ/∂x, ∂ρ/∂y, ∂ρ/∂z]

As in the computation of partial derivative ∂ρ
∂t , one must distinguish the

cases where the emission epoch is calculated using the pseudorange algo-
rithm and where the purely geometric algorithm is used, because implicit
relationships among the variables involved are different in each case.

Note that in the case of the purely geometric algorithm, a nominal value
of receiver coordinates rrcv = (x, y, z) is used to compute the transmission
time. Consequently, any error in these coordinates will also affect the re-
sults, and hence the geometric range ρ, through this transmission time
estimate. Nevertheless, as is shown in section 2B, its effect on the spatial
partial derivatives is negligible.

2A. Case of pseudorange-based algorithm

In this case, the nominal value chosen for the receiver’s position does not
affect, in any way, computation of the signal emission epoch, or the satellite
coordinates at that instant. In other words, receiver coordinates rrcv =
(x, y, z) and satellite coordinates rsat = (xsat, ysat, zsat) are ‘independent
variables’.

Consequently, as stated on page 140, when building the navigation equa-
tions

∂ρ

∂x
=
x− xsat

ρ
,

∂ρ

∂y
=
y − ysat

ρ
,

∂ρ

∂z
=
z − zsat

ρ

or equivalently [
∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z

]
= −ρ

T

ρ

2B. Case of purely geometric algorithm

Unlike the previous case 2A, receiver and satellite coordinates are not in-
dependent variables, but they are linked when the geometric algorithm is
used to compute the emission time. Indeed, the satellite coordinates at
emission epoch rsat depend on the emission epoch temission obtained by the
geometric algorithm, which further depends on the receiver coordinates
rrcv = (x, y, z) used to calculate the receiver-satellite geometric distance.

Taking into account the previous considerations, computation of partial
derivatives requires the reiterative use of the chain rule.

Given the geometric distance

ρ = c
(
treception − temission

)
=
√
ρT · ρ =

∥∥rsat − rrcv
∥∥

this results in
∂ρ

∂x
=

1

ρ
ρT · ∂ρ

∂x

On the other hand,

∂ρ

∂x
=
∂
(
rsat − rrcv

)
∂x

=
∂rsat

∂rrcv
· ∂rrcv
∂x

− ∂rrcv
∂x
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E. Jacobian Matrix: Computation of Partial Derivatives

Taking into account that the satellite coordinates at emission epoch rsat

depend on emission epoch temission obtained by the geometric algorithm,
which further depends on the receiver coordinates rrcv used to calculate
the receiver–satellite geometric distance, then

∂rsat

∂rrcv
=

∂rsat

∂temission
· ∂t

emission

∂rrcv
= ṙsat · ∂t

emission

∂rrcv

Derivative ∂temission/∂rrcv may be obtained implicitly by differentiating
the equation

ρ2 = c2
(
treception − temission

)2
=
(
rsat − rrcv

)T · (rsat − rrcv
)

leading to

c2
(
treception − temission

)(
−∂t

emission

∂rrcv

)
=
(
rsat − rrcv

)T· (∂rsat

∂rrcv
− ∂rrcv
∂rrcv

)
Taking into account in this expression that

∂rsat/∂rrcv = ṙsat · ∂temission/∂rrcv and ∂rrcv/∂rrcv = I3

gives

∂temission

∂rrcv
=

(
rsat − rrcv

)T
c2 (treception − temission) + (rsat − rrcv)

T · ṙsat

=

(
rsat − rrcv

)T
cρ
(

1 + (rsat−rrcv)T

ρ · ṙsatc
)

Finally, substituting into the equation for ∂ρ/∂x,

∂ρ

∂x
=

1

ρ
ρT· ∂ρ

∂x
= −1

ρ

(
rsat − rrcv

)T·
I3 −

ṙsat ·
(
rsat − rrcv

)T
cρ
(

1 + (rsat−rrcv)T

ρ · ṙsatc
)
∂rrcv

∂x

where ∂rrcv/∂x = (1, 0, 0)T .

In general, considering that ρ = rsat − rrcv, then

[
∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z

]
= −ρ

T

ρ
·

I3 −
ṙsat

c ·
ρT

ρ

1 + ρT

ρ ·
ṙsat

c


The term joining the matrix I3 in the previous expression accounts for

the contribution of errors in the estimation of satellite coordinates due to
errors in the nominal values of receiver coordinates (being the temission

computed using the geometric algorithm). This term, however, can be
neglected taking into account that ṙsat � c.

Thence [
∂ρ

∂x
,
∂ρ

∂y
,
∂ρ

∂z

]
' −ρ

T

ρ

which leads to the same result as in the previous case 2A.
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3. Jacobian matrix

Taking into account the above results, the matrix G associated with the
navigation equation system y = G x, see page 140, is given by the following.

3A. Case of pseudorange-based algorithm

G =


x0−x1

ρ1
0

y0−y1

ρ1
0

z0−z1

ρ1
0

1

...
...

...
...

x0−xn
ρn0

y0−yn
ρn0

z0−zn
ρn0

1



3B. Case of purely geometric algorithm

G =


x0−x1

ρ1
0

y0−y1

ρ1
0

z0−z1

ρ1
0

1− ρ̇1
0
c

...
...

...
...

x0−xn
ρn0

y0−yn
ρn0

z0−zn
ρn0

1− ρ̇1
0
c


where:

ρ̇ =
∂ρ

∂treception
' ρ

T

ρ
·
(
ṙsat − ṙrcv

)
can be evaluated either in a CRS or ECEF system.

Comment: The emission time computed using the geometric algorithm will
also be corrupted by other delays (from the ionosphere, troposphere. . . )
but together these are at most a few hundreds of metres and their effect is
negligible in this context.
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F. Antenna Phase Centres for GPS Broadcast Orbits and Clocks

F. Antenna Phase Centres for GPS
Broadcast Orbits and Clocks

The following table is from the National Geospatial-Intelligence Agency
(NGA) http://earth-info.nga.mil/GandG/sathtml/gpsdoc2009 10a.html .

Satellite antenna offset (satellite body centred coordinates, meters)

Block II PRN’s - Delta x= 0.2794, Delta y= 0.0000, Delta z= 0.9519

Block IIA PRN’s - Delta x= 0.2794, Delta y= 0.0000, Delta z= 0.9519

Block IIR PRN 02 - Delta x= -0.0099, Delta y= 0.0061, Delta z= -0.0820

Block IIR PRN 11 - Delta x= 0.0019, Delta y= 0.0011, Delta z= 1.5141

Block IIR PRN 13 - Delta x= 0.0024, Delta y= 0.0025, Delta z= 1.6140

Block IIR PRN 14 - Delta x= 0.0018, Delta y= 0.0002, Delta z= 1.6137

Block IIR PRN 16 - Delta x= -0.0098, Delta y= 0.0060, Delta z= 1.6630

Block IIR PRN 18 - Delta x= -0.0098, Delta y= 0.0060, Delta z= 1.5923

Block IIR PRN 19 - Delta x= -0.0079, Delta y= 0.0046, Delta z= -0.0180

Block IIR PRN 20 - Delta x= 0.0022, Delta y= 0.0014, Delta z= 1.6140

Block IIR PRN 21 - Delta x= 0.0023, Delta y= -0.0006, Delta z= 1.5840

Block IIR PRN 22 - Delta x= 0.0018, Delta y= -0.0009, Delta z= 0.0598

Block IIR PRN 23 - Delta x= -0.0088, Delta y= 0.0035, Delta z= 0.0004

Block IIR PRN 28 - Delta x= 0.0019, Delta y= 0.0007, Delta z= 1.5131

Block IIR-M PRN 01 - Delta x= 0.01245, Delta y= -0.00038, Delta z= -0.02283

Block IIR-M PRN 05 - Delta x= 0.00292, Delta y= -0.00005, Delta z= -0.01671

Block IIR-M PRN 07 - Delta x= 0.00127, Delta y= 0.00025, Delta z= 0.00056

Block IIR-M PRN 12 - Delta x= -0.01016, Delta y= 0.00587, Delta z= -0.09355

Block IIR-M PRN 15 - Delta x= -0.00996, Delta y= 0.00579, Delta z= -0.01227

Block IIR-M PRN 17 - Delta x= -0.00996, Delta y= 0.00599, Delta z= -0.10060

Block IIR-M PRN 29 - Delta x= -0.01012, Delta y= 0.00591, Delta z= -0.01512

Block IIR-M PRN 31 - Delta x= 0.00160, Delta y= 0.00033, Delta z= -0.05750
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G. List of Acronyms

G. List of Acronyms

AltBOC Alternate Binary Offset Carrier

AMCS Alternate Master Control Station

ANTEX ANTenna EXchange format

AOAD/M T Allen Osborne Associates Dorne Margolin Model T

APC Antenna Phase Centre

ARNS Aeronautical Radio Navigation Service

ARP Antenna Reference Point

ASCII American Standard Code for Information Interchange

A/S Anti-Spoofing

BDT BeiDou Time

BIPM Bureau International des Poids et Mesures

BIE Bureau International de l’Heure

BLUE Best Linear Unbiased Minimum Variance Estimator

BM Benchmark

BOC Binary Offset Carrier

BPSK Binary Phase Shift Keying

BRS Barycentric Reference System

C/A Coarse/Acquisition

CASC China Aerospace Science and Technology Corporation

CBOC Composite Binary Offset Carrier

CC-M Central Synchroniser

CDDIS Crustal Dynamics Data Information System

CDMA Code Division Multiple Access

CEP Celestial Ephemeris Pole

CGCS2000 China Geodetic Coordinate System 2000

CIO Conventional International Origin

203



TM-23/1

CIP Celestial Intermediate Pole

CIS Conventional Inertial System

CODE Centre for Orbit Determination in Europe

C/NAV Commercial Navigation Message

CORS Continuously Operating Reference Stations

CRC Cyclic Redundancy Check

CRF Celestial Reference Frame

CRS Conventional Celestial Reference System

CS Commercial Service

CTP Conventional Terrestrial Pole

CTS Conventional Terrestrial System

DCB Differential Code Bias

DoD US Department of Defense

DOP Dilution Of Precision

ECEF Earth-Centred, Earth-Fixed

ECI Earth-Centred Inertial

EGNOS European Geostationary Navigation Overlay System

EMR Energy Mines and Resources

ENU East North Up

EOP Earth Orientation Parameters

ERP Earth Rotation Parameters

ESA European Space Agency

ET Ephemeris Time

EUV Extreme UltraViolet

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FOC Full Operational Capability

F/NAV Freely accessible Navigation Message

F-PPP Fast Precise Point Positioning

GA Ground Antennas

gAGE Research group of Astronomy and Geomatics

GAST Greenwich Apparent Sidereal Time

GCC Ground Control Centre
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G. List of Acronyms

GCS Ground Control Segment

GEO Geostationary Orbit

GGSP Galileo Geodetic Service Provider

GIOVE Galileo In-Orbit Validation

GIM Global Ionospheric Maps

Glonass GLObal NAvigation Satellite System

GLNT Glonass Time

GMT Greenwich Mean Time

GMS Ground Mission Segment

GMST Greenwich Mean Sidereal Time

G/NAV Governmental Navigation Message

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPST GPS Time

GRAPHIC Group and Phase Ionospheric Calibration

GRS Geocentric Reference System

GSS Galileo Sensor Stations

GST Galileo System Time

GTRF Galileo Terrestrial Reference Frame

GUI Graphical User Interface

HPPS High-Precision Positioning Service

HTML HyperText Markup Language

IAU International Astronomical Union

ICAO International Civil Aviation Organization

ICD Interface Control Document

ICRF International Celestial Reference Frame

ICRS International Celestial Reference System

IDF Ionospheric Disturbance Flag

IERS International Earth Rotation and Reference Systems Service

IGEX International Glonass EXperiment

IGS International GNSS Service

IGSO Inclined Geosynchronous Satellite Orbit

I/NAV Integrity Navigation Message
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IOV In-Orbit Validation

IPP Ionospheric Pierce Point

ITRF International Terrestrial Reference Frame

ITRS International Terrestrial Reference System

ITU International Telecommunications Union

ITU-R International Telecommunications Union Radiocommunication
Sector

JD Julian Day

JPL Jet Propulsion Laboratory

LAST Local Apparent Sidereal Time

LC Carrier phase ionosphere-free combination

LEO Low Earth Orbit

LMST Local Mean Sidereal Time

LS Laser Station

L2CL L2 Civil Long

L2CM L2 Civil Moderate

MBOC Multiplexed Binary Offset Carrier

MC Satellite Mass Centre

MCS Master Control Station

MEO Medium Earth Orbit

MJD Modified Julian Day

MM Monument Marker

MODIP MOdified DIP latitude

MS Monitoring Stations

MSE Mean-Square Error

MW Melbourne–Wübbena

NASA National Aeronautics and Space Administration

NAV Navigation Message

NEU North East Up

NGA National Geospatial-Intelligence Agency

NIST National Institute of Standards and Technology

OS Open Service

PCV Phase Centre Variation
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G. List of Acronyms

PPP Precise Point Positioning

PPS Precise Positioning Service

PRN Pseudo-Random Noise

PRS Public Regulated Service

PZ-90 Parametry Zemli 1990 (Parameters of the Earth 1990)

QPSK Quadrature Phase-Shifted Keying

QZSS Quasi-Zenith Satellite System

RINEX Receiver INdependent EXchange format

RK4 Fourth-order Runge–Kutta

RMS Root Mean Square

RMSE Root Mean Square Error

RNSS Radionavigation Satellite Service

RTK Real-Time Kinematics

S/A Selective Availability

SAR Search and Rescue

SBAS Satellite-Based Augmentation System

SCC System Control Centre

SEP Spherical Error Probable

SI International System of Units

SINEX Solution (Software/technique) INdependent EXchange format

SIS Signal In Space

SoL Safety-of-Life

SP3 Standard Product #3

SPP Standard Point Positioning

SPS Standard Positioning Service

SSTL Surrey Satellite Technology Ltd.

STEC Slant Total Electron Content

SU Soviet Union

SVN Space Vehicle Number

SW Synchronisation Word

TAI International Atomic Time

TCAR Three Carrier Ambiguity Resolution
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TCB Barycentric Coordinate Time, from the French Temps Coordonné
Barycentrique

TCG Geocentric Coordinate Time, from the French Temps Coordonné
Géocentrique

TDB Barycentric Dynamic Time, from the French Temps Dinamique
Barycentrique

TDT Terrestrial Dynamic Time

TEC Total Electron Content

TECU Total Electron Content Unit

TLM TeLeMetry

TMBOC Time Multiplexed BOC

TGD Total Group Delay

TRF Terrestrial Reference Frame

TRS Conventional Terrestrial Reference System

TT Terrestrial Time

UERE User Equivalent Range Error

ULS Mission Uplink Stations

UNE Up North East

UPC Technical University of Catalonia

USAF United States Air Force

USNO United States Naval Observatory

UT Universal Time

UTC Coordinated Universal Time

UT0 Universal Time 0

UT1 Universal Time 1

UT2 Universal Time 2

VLBI Very Long Baseline Interferometry

WAAS Wide Area Augmentation System

WARTK Wide-Area Real-Time Kinematics

WGS World Geodetic System

WGS-84 World Geodetic System 84

WLS Weighted Least Squares

ZTD Zenith Tropospheric Delay
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