

測位技術振興会 第5回 研究発表講演会

観測行列に基づくプロセスノイズの分散設定を用いた GNSS/INS 測位の精度評価

<u>高山洋史</u>¹,浦久保孝光²

¹古野電気株式会社 ²神戸大学大学院

大阪公立大学 文化交流センター 2023年9月1日

- 1. 研究背景と概要
- 2. 観測行列に基づくプロセスノイズ設定法
- 3. 走行実験による測位精度評価
- 4. まとめ

FURUNO

◆ 衛星の見え方の2つの特徴

【衛星配置の偏り】 天頂方向の衛星が可視になる

【見え方の変化】 突然可視になる衛星がある

都市部での衛星の見え方が 拡張カルマンフィルタの推定に与える影響に着目

 ◆ 拡張カルマンフィルタに対する仮定
 > ダイナミクスのモデルはしばしば不正確
 ◆ 正確なプロセスノイズの分散は未知
 > 保守的なプロセスノイズの分散設定
 Q_k + δQ_k
 Q_k: ノミナルな設定値 δQ_k: 人為ノイズによる設定値

◆研究内容※

- ▶ 安易な **δQ**_k の設定が引き起こす精度劣化
- ▶ 観測行列に基づく*δQ_k*の設定法の提案

▶ 簡易実験による効果の確認

□ Nonlinear system model $x_k = f_k(x_{k-1}) + w_k$ $y_k = h_k(x_k) + v_k$

Time update
$$\widehat{x}_{k}^{-} = f_{k-1}(\widehat{x}_{k-1}^{+})$$

$$P_{k}^{-} = F_{k-1}P_{k-1}^{+}F_{k-1}^{T} + Q_{k} + \delta Q_{k}$$
Measurement update
$$\widehat{x}_{k}^{+} = \widehat{x}_{k}^{-} + K_{k}(y_{k} - h_{k}(\widehat{x}_{k}^{-}))$$

$$P_{k}^{+} = (I - K_{k}H_{k})P_{k}^{-}$$

$$K_{k} = P_{k}^{-}H_{k}(H_{k}P_{k}^{-}H_{k}^{T} + R_{k})^{-1}$$

FUDUNA

[※]文献

Y. Takayama et al., "Adaptive Choice of Process Noise Covariance in Kalman Filter Using Measurement Matrices.", IEEE Transactions on Control Systems Technology, 2022 (under review)

Y. Takayama et al., "GNSS/INS Positioning in Dense Urban Environment with Adaptive Choice of Process Noise Covariance Based on Satellite Geometry", ION GNSS+ 2023.

提案法の実用を想定した 走行実験による測位精度評価結果の報告 Adaptive Kalman filter □ Time update $\boldsymbol{P}_{k}^{-} = \boldsymbol{F}_{k-1} \boldsymbol{P}_{k-1}^{+} \boldsymbol{F}_{k-1}^{T} + \widehat{\boldsymbol{Q}}_{k}$ $\widehat{\boldsymbol{Q}}_{k} = \boldsymbol{g}(\boldsymbol{y}_{k-N}, \cdots, \boldsymbol{y}_{k-1})$ 観測行列 H_k が退化すると \hat{Q}_k が一意に決まらない. Fading memory filter □ Time update $P_k^- = (1+c)F_{k-1}P_{k-1}^+F_{k-1}^T + Q_k$ *c*: Fading factor c > 0 $\delta Q_k = \alpha F_{k-1} P_{k-1}^+ F_{k-1}^T$ とした EKF と等価である.

C. Hide et al., "Adaptive Kalman filtering algorithms for integrating GPS and low cost INS," *PLANS 2004. Position Location and Navigation Symposium*, Monterey, CA, USA, 2004, pp. 227-233, doi: 10.1109/PLANS.2004.1308998.

G. W. Gawrys et al., "Divergence and the fading memory filter," *1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes*, Houston, TX, USA, 1975, pp. 66-68, doi: 10.1109/CDC.1975.270650.

 $\delta Q_k = \alpha F_{k-1} P_{k-1}^+ F_{k-1}^T$ とした EKF と等価である. 安易な δQ_k の設定が都市部で精度劣化を引き起こす.

安易な δQ_k が引き起こす精度劣化

 δQ_k の設定によっては可視衛星の数が増えても 精度劣化する可能性がある

FURUNO

感度解析の結果

◆ 感度の定義
△P_k ≡ P⁺_k(
$$\delta Q_k$$
) - P⁺_k(0)
△K_k ≡ K_k(δQ_k) - K_k(0)

↓ EKF の式を代入する.
 δQ_k による ΔP_k $\succeq \Delta K_k$ $ds - \hat{s}$ に決まる.
 δQ_k による ΔP_k $\succeq \Delta K_k$ $ds - \hat{s}$ に決まる.
 $\Delta P_k = (I - K_k(0)H_k)\delta Q_k [(I - K_k(0)H_k)^{-T} + H_k^T R_k^{-1}H_k \delta Q_k]^{-1}$
 $\Delta K_k = \Delta P_k H_k^T R_k^{-1}$
 ΔP_k $ds + \hat{s}$ δQ_k $\delta Q_$

7

◆ 観測残差二乗和の期待値の最小化問題 $\begin{bmatrix}
\Delta P_{k}^{*} = \operatorname{argmin} J_{k}(\Delta P_{k}) \\
J_{k}(\Delta P_{k}) = E\left\{ \left\| H_{k}(x_{k} - \hat{x}_{k}^{+}(\Delta P_{k})) + v_{k} \right\|_{R_{k}^{-1}} \right\}$ $E\{a\}: 変数 a o 期待値 \\
\|a\|_{W}: a o = \lambda d \neq J \wedge \Delta d \neq J \wedge \Delta d \neq J \wedge \Delta d \neq J \end{pmatrix}$ $\Delta P_{k}^{*} \operatorname{idx} \operatorname{$

◆ 解析的・数値的に解くことは困難

 ΔP_k に対する仮定をいれて解析的に解く

FUDUNA

FURUNO

◆ 最小化問題の解 スカラ変数 *α_k* について解く

$$J_{k}(\Delta \boldsymbol{P}_{k}) = E\left\{\left(\boldsymbol{y}_{k} - \boldsymbol{h}(\hat{\boldsymbol{x}}_{k}^{+}(\delta \boldsymbol{Q}_{k}))\right)^{T} \left(\boldsymbol{y}_{k} - \boldsymbol{h}(\hat{\boldsymbol{x}}_{k}^{+}(\delta \boldsymbol{Q}_{k}))\right)\right\}$$
$$\Delta \boldsymbol{P}_{\boldsymbol{k}}^{*} = \operatorname{argmin} J_{k}(\Delta \boldsymbol{P}_{k}) = \alpha_{k}^{*}\boldsymbol{H}_{\boldsymbol{k}}^{T}\boldsymbol{R}_{\boldsymbol{k}}^{-1}\boldsymbol{H}_{\boldsymbol{k}}$$
$$\subset \subset \heartsuit$$
where $\frac{\partial J_{k}}{\partial \alpha_{k}}\Big|_{\alpha_{k}=\alpha_{k}^{*}} = 0.$

♦ 提案法

- ▶ 観測行列 H_k に応じて変化
- ▶ *H*-adaptive フィルタと呼称

□ Time update $P_{k}^{-}(\delta Q_{k}^{*}) = F_{k-1}P_{k-1}^{+}F_{k-1}^{T} + Q_{k} + \delta Q_{k}^{*}$ Measurement update $\boldsymbol{P}_{k}^{+}(\boldsymbol{\delta}\boldsymbol{Q}_{k}^{*}) = (\boldsymbol{I} - \boldsymbol{K}_{k}(\boldsymbol{\delta}\boldsymbol{Q}_{k}^{*})\boldsymbol{H}_{k})\boldsymbol{P}_{k}^{-}(\boldsymbol{\delta}\boldsymbol{Q}_{k}^{*})$ $= \boldsymbol{P}_{\nu}^{+}(\boldsymbol{0}) + \Delta \boldsymbol{P}_{\nu}^{*}$ □ Kalman gain $K_k(\boldsymbol{\delta Q}_k^*) = \boldsymbol{P}_k^{-}(\boldsymbol{\delta Q}_k^*)\boldsymbol{H}_k(\boldsymbol{H}_k\boldsymbol{P}_k^{-}(\boldsymbol{\delta Q}_k^*)\boldsymbol{H}_k^{T} + \boldsymbol{R}_k)^{-1}$ $= K_{\nu}(\mathbf{0}) + \Delta K_{\nu}^{*}$ $\mathcal{O} = \boldsymbol{H}_{k}^{T} \boldsymbol{R}_{k}^{-1} \boldsymbol{H}_{k}$ $\alpha_k^* = \frac{\mathrm{tr}\mathcal{O}^2}{\mathrm{tr}\mathcal{O}^5 \boldsymbol{P}_k^-(\boldsymbol{0}) + \mathrm{tr}\mathcal{O}^4}$ $\Delta \boldsymbol{P}_{\nu}^{*} = \alpha_{\nu}^{*} \mathcal{O}$ $\Delta \boldsymbol{K}_{\boldsymbol{k}}^{*} = \Delta \boldsymbol{P}_{\boldsymbol{k}}^{*} \boldsymbol{H}_{\boldsymbol{k}}^{T} \boldsymbol{R}_{\boldsymbol{k}}^{-1}$ $\delta \boldsymbol{Q}_{k}^{*} = [\boldsymbol{I} - (\boldsymbol{K}_{k}(\boldsymbol{0}) + \Delta \boldsymbol{K}_{k}^{*})\boldsymbol{H}_{k}]$ $\times \left(\Delta \boldsymbol{P}_{k}^{*} - \Delta \boldsymbol{K}_{k}^{*} (\boldsymbol{H}_{k} \boldsymbol{P}_{k}^{-}(\boldsymbol{0}) \boldsymbol{H}_{k}^{T} + \boldsymbol{R}_{k} \right) \Delta \boldsymbol{K}_{k}^{*T} \right)$ $\times [I - (K_k(\mathbf{0}) + \Delta K_k^*)H_k]^T$

xの式については省略

◆ *H*-adaptive フィルタを GNSS/INS 測位に適用

状態ベクトル

 $x = (r^{T} t \dot{r}^{T} t b^{T})^{T}$ $r \in \mathbb{R}^{3}$: 位置ベクトル [m] $\dot{r} \in \mathbb{R}^{3}$: 速度ベクトル [m/s] $t \in \mathbb{R}$: クロックバイアス [m] $\dot{t} \in \mathbb{R}$: クロックドリフト [m/s] $b \in \mathbb{R}^{s-1}$: 衛星システム間バイアス [m] s: 衛星システムの数

観測ベクトル

 $\mathbf{y} = (\mathbf{\rho}^T \quad \dot{\mathbf{\rho}}^T \quad \mathbf{V}_{INS}^T)^T$ $\mathbf{\rho} \in \mathbb{R}^m$: 擬似距離 [m] $\dot{\mathbf{\rho}} \in \mathbb{R}^m$: レンジレート [m/s] $\mathbf{V}_{INS} \in \mathbb{R}^3$: 速度ベクトル [m/s]

使用した信号(信号強度によるマスクあり) GPS L1C/A, QZSS L1C/A, Galileo E1

State equation $x_k = Fx_{k-1} + w_k$ Measurement equation $y_i = \rho_i = ||\mathbf{r} - \mathbf{r}_i||_I + \delta I_i + \delta T_i + \delta r_i + v_i$ $y_{i+m} = \dot{\rho}_i = \frac{(\mathbf{r} - \mathbf{r}_i)^T}{||\mathbf{r} - \mathbf{r}_i||_I} (\dot{\mathbf{r}} - \dot{\mathbf{r}}_i) + v_{i+m}$ $(y_{i+2m+1}, y_{i+2m+2}, y_{i+2m+1})^T =$ $V_{INS} = \dot{\mathbf{r}} + (v_{i+2m+1}, v_{i+2m+2}, v_{i+2m+3})^T$

Google Earth

- 1. Extended Kalman filter(EKF) $\square \delta Q_k = 0$
- 2. Fading memory filter(FMF)
 - **D** $\delta Q_k = c F_{k-1} P_{k-1}^+ F_{k-1}^T, c = 0.03$
- 3. *H*-adaptive filter

 $\Box \quad \delta \boldsymbol{Q}_k = \delta \boldsymbol{Q}_k^*$

◆ 設定3の *H*-adaptiveフィルタ ▶ 良好な結果

	EKF	FMF	H-adaptive
位置誤差 (時間平均)	8.3[m]	6.6[m]	5.6[m]

◆ 都市部での衛星の見え方に着目

▶ 拡張カルマンフィルタに与える影響の考察

- ▶ 感度解析に基づくパラメータ設定方法の考案
- ▶ 観測残差二乗和期待値を最小化することでパラメータを決定
- ◆ 実用を想定した走行実験
 - ▶ 様々な周辺環境を含むコースで測位精度評価
 - ▶ 従来設定に対して~40%程度の誤差軽減の効果を確認